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ABSTRACT

This paper deals with the real time simulation of a class A single
ended guitar power amplifier. Power tubes and triode models are
compared, based on Norman Koren’s work. Beam tetrodes and
pentodes characteristics are discussed, and displayed as Norman
Koren’s model parameters. A simple output transformer model is
considered, with its parameters calculated from datasheets speci-
fications. Then, the circuit is modeled by a nonlinear differential
algebraic system, with extended state-space representations. Stan-
dard numerical schemes yield efficient and stable simulations of
the stage, and are implemented as VST plug-ins.

1. INTRODUCTION

Many analog audio circuit simulations (guitar amplifiers, synthe-
sizers, studio devices etc.) have been released for musicians, who
want to replace their equipment with cheaper and more flexible
digital equivalents. However, the realism of these digital simula-
tions can still be improved. This is mainly due to nonlinearities
that are responsible for the “sound signature of analog audio de-
vices” the modeling of which is often complex and still keeps a lot
of people busy.

This paper deals with realistic simulation of guitar tube am-
plifiers, for real-time applications. Several papers have been pub-
lished about this subject, often focused on triode amplifiers cir-
cuits, and sometimes power amplifiers (see [1, 2, 3, 4, 5]). In this
article, we consider a single-ended tube power amplifier, using
pentodes and an output transformer. First, we consider Norman
Koren’s model for several standard power tubes found in guitar
power amplifiers. The control grid current and the parasitic capac-
itances are studied, and compared with the work done in [5] about
triodes. Then, a simple linear model for the output transformer is
introduced, with its parameters calculated from datasheets specifi-
cations. The circuit is simulated in real time using extended state
space representations. Finally, the results are shown and discussed.

2. THE CLASS A POWER AMPLIFIER

The class A power amplifier (figure 1) increases the power of the
signal from a preamplifier to a speaker, with a matched output
impedance. This is a very simple power amplifier, chosen for its
sound characteristics, and for the simplicity of its modelisation. It
is defined as “single ended” because it uses a single tube to produce
an output, in contrast to push-pull amplifiers, another topology us-
ing more tubes and phase inverters for more power, operating in
classes AB or B (see [6] for more information about power ampli-
fiers classes). The voltagesVb1 andVb2 are constant bias voltages.
Typical values for its components can be seen in table 1.
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Figure 1: The electronic circuit

Vb1 Vb2 Rg1 Rg2 Rk RL Ck
300 V 400 V 5.6 kΩ 1 kΩ 220Ω 8 Ω 100µF

Table 1: Typical values of the components used in the power am-
plifier

The passive components are considered ideal. Using the Mill-
man’s theorem, Kirchoff laws and our component models, the elec-
tronic circuit can be modeled by a set of differential algebraic
equations.

3. POWER TUBES MODELS

3.1. Introduction

Vg1 Vg2 Vp

Vk

Ig1 Ig2 Ip

Figure 2: The power tube’s model

As seen in [7, 5], the triode has a capacitive behaviour between
the grid and the plate, increased by the Miller effect. The adding
of the screen grid decreases the value of the capacitance (from 2
pF to 0.02 pF), and increases the power gain of the vacuum tube
(µ is the voltage gain). This yields to a topology called the tetrode,
which has a unwanted side-effect, known as the Dynatron effect.
It gives the tetrode valve a distinctive negative resistance charac-
teristic, sometimes called “tetrode kink”. This problem has been
solved with the addition of a third grid (the pentode patented by
Philips/Mullard [8]), and with another topology called the beam
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tetrode. These two kinds of vacuum tubes are very often described
as pentodes.

The pentode is a vacuum tube widely used in guitar and hifi
power amplifiers, a triode with the control grid (G1), the cathode
(K), the plate (P), and two extra pins : the screen grid (G2) and
the suppressor grid (G3). Beam tetrodes and pentodes plate cur-
rent curves in datasheets show they have a significantly different
behaviour. In short, beam tetrodes have much sharped knees com-
pared to pentodes, a lower ratio of screen to plate current, a lower
third harmonic distortion [6]. Their model is very important for
the realism of the complete stage’s simulation.

3.2. Norman Koren’s model

The Norman Koren’s model [1] is said “phenomenological”. It
models the behavior of physical phenomena using parameters not
derived from fundamental physics, to match published curves from
datasheets. The expression of theIp andIg2 currents for pentode-
like vacuum tubes are the following :
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Vg2k

Kp

log

[

1 + exp

(

Kp

(

1

µ
+

Vg1k

Vg2k

))]

(1)
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EEx
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Kg1

(1 + sgn(E1)) arctan
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Kvb

)
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(
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(

Vg2k

µ
+ Vg1k

))

(3)

The table 2 displays typical tubes parameters, from [1] and
SPICE models.µ is the voltage amplification factor,Kg1 a pa-
rameter inversely proportional to overall plate current,Ex an ex-
ponent,Kvb a knee parameters in volts,Kg2 the inverse screen
grid current sensitivity, andKp a parameter that affects the plate
currents for large plate voltages and large negative grid voltages.
The differences between the pentodes and the beam tetrodes in
general are displayed in this table, particularly with the parameters
µ andKvb.

Pentode µ Kg1 Kg2 Kp Kvb Ex

EL34 11 650 4200 60 24 1.35
EL84 16 570 4200 50 24 1.35

Beam Tetrode µ Kg1 Kg2 Kp Kvb Ex

6L6GC 8.7 1460 4500 48 12 1.35
KT88 8.8 730 4200 32 16 1.35

Table 2: The parameters of Norman Koren’s model for a few pen-
todes and beam tetrodes
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Figure 3: Norman Koren’s model for theIp current

3.3. Grid current and parasitic capacitances

The Ig1 current is often neglected in triode models [3, 9]. But it
is responsible for the grid rectification effect that designers try to
limit using specific polarizations and the resistanceRg1. In [5],
the grid current model was a simple approximation of a diode’s
characteristic. A smooth transition is added between the resistive
behaviour and the interval of voltages where the current is null,
with a second order polynomial. This model gives results close to
SPICE’s diode models. The parameterRg1k controls the resistive
behaviour of the grid current,Vγ is the voltage threshold between
the null and resistive behaviour. The parameterKn is the length
of the smooth transition.

Ig1 =











0 if Vg1k < Vγ −Kn
Vg1k−V γ

Rg1k
if Vg1k > Vγ +Kn

aV 2
g1k + bVg1k + c otherwise

(4)

with

a =
1

4KnRg1k

b =
K − Vγ

2KnRg1k

c = −a(Vγ −Kn)
2 − b(Vγ −Kn) (5)

Vγ Rg1 Kn

13 V 6000Ω 3 V

Table 3: Typical values for the parameters of grid current’s model

In [5], we consider the dynamic behaviour of the triode model
with its parasitic capacitances, in particular the capacitance be-
tween the grid and the cathode, because of the Miller effect. Pen-
todes and tetrodes have lower parasitic capacitances than triodes.
The parameterµ is lower than 20, instead of 100 for 12AX7 tri-
odes. So, considering the Miller effect for pentode-like tubes, the
capacitances have no effect inside the bandwidth of audible fre-
quencies, and including parasitic capacitances in tube models is
not judged relevant. This result has been confirmed by SPICE sim-
ulations and informal listening tests.

4. OUTPUT TRANSFORMER MODELS

Vacuum tube power amplifiers typically have a tube output impedance
around 1 kΩ, whereas loudspeakers have an impedance between 4
and 16Ω. The high-impedance plate speaker load is transformed
into a low-impedance load using an output transformer. The ideal
output transformer is defined by the number of turns in its primary
windingNp and in its secondary windingNs. The ratio between
the input and output impedance of the transformer is a function of
(Np/Ns)

2.
We consider the Plitron PAT-3050-SE-02 output transformer, a

typical output transformer for single ended power amplifiers. The
relevant information for our model is available on Plitron data-
sheets, and in the table 4.

4.1. A simplified model

The transformer’s model has been developed by Plitron and adapt-
ed by Norman Koren [1]. Its schematic is displayed in the figure
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Total primary inductance Lp 40 H
Primary leakage inductance Lsp 10 mH
Quality factor =Lp/Lsp Q 4000
Turns ratio N = Np/Ns 35.551
Total primary resistance Rip 80Ω
Total secondary resistance Ris 0.1Ω

Table 4: Information about the Plitron PAT-3050-SE-02 output
transformer

4, and its parameters are calculated according to the datasheet in
the table 5.

L2 = Lp/N
2

M12 =
√

1− 1/Q
√
L1L2

Rin Rout L1 L2 M12

80Ω 0.1Ω 40 H 0.0316505 H 1.125035 H

Table 5: The parameters of the output transformer’s model used in
simulation
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Figure 4: Simplified output transformer model

5. NUMERICAL SCHEMES

5.1. Extended State-Space Representations

5.1.1. Presentation

Linear state-space representations are well known in control en-
gineering. For nonlinear cases, nonlinear functions can be intro-
duced in their classical formulation. Moreover, the nonlinearity
can introduce implicit equations. We have suggested an extended
state-space representation in [5], to separate the differential equa-
tions of implicit problems, with the introduction of a static non-
linear vectorW . This is a similar but more general state-space
representation for nonlinear systems than the K-method (see [10]).
LetX be the dynamic state vector of the studied system,W a static
nonlinear state,U the input vector andY the output vector.

dX/dt = f(X,W,U) (6)

0 = g(X,W,U) (7)

Y = h(X,W,U) (8)

Remark : the linear case is a particular extended state space repre-
sentation without the functiong, with dim W = 0 and the func-
tionsf(X,U) = AX + BU andh(X,U) = CX + DU (A, B,
C and D are constant matrices).

5.1.2. Circuit Equations

The dynamic behavior of the circuit is caused by the capacitors and
inductances. The nonlinearity comes from the tube modeling, the
expression of the currentsIp, Ig1 andIg2. Let the state variables
be :

U = Vin

X = [Vk VT1 − Vp Vout − VTO]
T

W = [Vg1 Vg2 Vp]
T

Y = Vout

The dimension of the vectorsX andW are both equal to three.
The state space representation of the class A power amplifier stage
is the following :

f =



















[

Ig1 + Ig2 + Ip − X1

Rk

]

1

Ck

D
∆
[Vb2 −X2 −W3]−

B
∆

[

RL

Rout
− 1

]

X3

A
∆

[

RL

Rout
− 1

]

X3 −
C
∆
[Vb2 −X2 −W3]

(9)

g =







W1 − U +Rg1Ig1
W2 − Vb1 +Rg2Ig2
−X2 +RinIp

(10)

h =
RL

Rout

X3 (11)

with

A =
L1

Rin

, B =
M12

Rout

, C =
M12

Rin

, D =
L2

Rout

∆ = AD −BC

The currents are functions ofX, W andU . This extended
state space representation yields to a numerical simulation with
standard methods of resolution, for differential and implicit equa-
tions.

5.2. Discretization

Discretization of the extended state-space equations is done with
the resolution of differential and implicit equations. Their com-
plexity is a consequence of the numerical scheme chosen for the
resolution, and the existence of nonlinear delay-free loops in the
electronic circuit.Te is the sampling period.

5.2.1. Differential equations

To solve the ordinary differential equations (equation 6), explicit
Runge-Kutta methods are often used [11, 12]. Implicit methods
are also used to solve stiff problems (see [5]), as the trapezoidal
method (equation 12), often called bilinear transform and widely
used in digital signal processing [13].

Xn+1 = Xn +
Te

2
f(Xn+1,Wn+1, Un+1)

+
Te

2
f(Xn,Wn, Un) (12)

We have seen in [5] that the consideration of the parasitic ca-
pacitanceCgp in the model makes a stiffness problem appear, and
requires the use of implicit numerical schemes. Stiffness can be
considered as a differential equation with some terms that can lead
to rapid variation in the solution. In equations 9, the coefficient
∆ is around10−6. The use of implicit algorithms is necessary to
guarantee the stability.
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5.2.2. Implicit equations

The standard method of Newton-Raphson is used to solve implicit
equations writtenf(Z) = 0 with Z a vector of any dimension, and
find its roots. This method solves equation 7, but also equation 6 if
implicit methods of differential equation’s resolution are used. So,
Z is the vector[X W ]T .

Let Zk
n be the approximative value ofZ at the iterationk of

the algorithm for the samplen. Jf (Z) is the Jacobian matrix of
f(Z).

Zk+1
n = Zk

n − J−1

f (Zk
n)× f(Zk

n) (13)

This algorithm converges to a solution if the derivatives are
Lipschitz continuous and locally isomorphic around the solution
[11, 12]. This is the case if the initial valueZ0

n is close enough
to the solution. Our numerical scheme works well, with 4 itera-
tions, if we choose the previous stateZn−1 as the initial value,
with high sampling frequencies (typically in megahertz), to ensure
that successive samples are close in value to each other.

6. DISCUSSION

The main purpose of power tube stages is to increase the power
of the signal. Input voltages are around a few volts in general :
the stage adds a few harmonics to the signal’s content, with an
impact on the sound which is less important than what is done
by preamplifiers stages. If the input voltage is higher, distortion
appears from the power tubes and the output transformers. This
phenomenon occurs typically in “vintage” guitar amps.

In our simulation, the nonlinear behaviour of the transformer
is not considered. A sinousoid with a frequency of 2000 Hz and
an amplitude of 30 V feeds the input of the simulated stage, with a
6L6GC beam tetrode. The output is displayed in the figure 5.
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Figure 5: Output signal and harmonic response for an input sinu-
soid (2000 Hz 30 V)

The output does not change significantly when we replace the
tube models. The only perceptive phenomenon is the gain differ-
ence between tubes with this model. More differences may be lis-
tenable if a more complex circuit had been modeled, with coupling
between the circuit and a speaker. Sound samples are available on
http://www.orosys.fr/cohen/samples.htm.

7. CONCLUSION

This study has shown a way to simulate a simple class A power
amplifier, using extended state-space representations, the tube model
of Norman Koren, and a linear model of the output transformer. It
yields to the implementation of plug-ins, which produces satisfac-
tory sounds with standard cabinet simulations. Moreover, future
work will be dedicated to model and simulate other topologies of
guitar power amplifiers, phenomenon such as feedback and sag,

the coupling between each element of a guitar amplifier, and the
nonlinearities of output transformers, such as hysteresis effects.
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