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ABSTRACT

The real-time simulation of analog circuits by digital systems be-
comes problematic when parametric components like potentiome-
ters are involved. In this case the coefficients defining the digital
system will change and have to be adapted. One common solution
is to recalculate the coefficients in real-time, a possibly computa-
tionally expensive operation.

With a view to the simulation using state-space representa-
tions, two parametric subcircuits found in typical guitar amplifiers
are analyzed, namely the tone stack, a linear passive network used
as simple equalizer and a distorting preamplifier, limiting the sig-
nal amplitude with LEDs. Solutions using trapezoidal rule dis-
cretization are presented and discussed. It is shown, that the com-
putational costs in case of recalculation of the coefficients are re-
duced compared to the related DK-method, due to minimized ma-
trix formulations. The simulation results are compared to refer-
ence data and show good match.

1. INTRODUCTION

For the simulation of non-linear audio systems, e.g. guitar ampli-
fiers or effect units, several methods are common. Most of them
are based on the electrical relations of the original circuit, namely
the use of wave digital filters [1] or state-space systems [2].

Typically the circuit of the reference system is split up into
cascaded blocks whose input-output relation can be described by
analytic expressions, non-linear equations or lookup tables. In this
way it is possible to implement simulations that allow real-time
computation. An introduction to the state of the art gives [3].

One big problem arises when component values are changed.
In this case the arranged system has to be adapted. Common so-
lutions are to calculate the coefficients for all relevant parameter
values offline and store them in large lookup tables, or to perform
a recomputation of the coefficients in real-time. In other words:
the simulation of systems containing parametric components like
potentiometers or variable capacitors comes along with either high
computational costs or high memory requirements.

In this paper we discuss state-space models for two paramet-
ric audio circuits and present an alternative approach reducing the
computational costs for recomputations.

2. STATE-SPACE REPRESENTATION OF LINEAR
SYSTEMS

The state-space representation is a common tool in control engi-
neering and system theory to describe physical systems. By defin-

ing suitable internal states, a system can be modeled as a set of
input, output and state variables that are related by first-order dif-
ferential equations.

2.1. Continuous-Time model

For a general linear system defined in continuous time we have

ẋ(t) =A · x(t)+B · u(t) (1)
y(t) =D · x(t)+E · u(t) (2)

with state variables x(t) and ẋ(t), inputs u(t) and outputs y(t).
A is called the state-, B the input-, D the output- and E the
feedthrough-matrix. In most cases the considered system will have
single input and single output. The input-, output- and feedthrough-
matrices are then reduced to column vector b, row vector d and
scalar e. Note that in the following, we will drop the time-depen-
dence from the continuous-time variables for notational brevity.

For electric circuits the number of state variables needed is
approximately given by the number of energy storage elements,
e.g. a two-port network with 1 capacitor and 1 inductor requires
2 state variables. The analysis is based on network theory basics
(Kirchhoff’s circuit laws).

2.2. Discretization

The differential equation (1) describes a circuit, where x are the
states, typically the voltages across capacitors, u is the input volt-
age and y is the output voltage. To obtain a discrete-time system
from this continuous-time description, we apply the trapezoidal
rule

T
2

(
ẋ(n) + ẋ(n− 1)

)
= x(n)− x(n− 1), (3)

where T denotes the sampling interval. By substituting equa-
tion (1) in equation (3), this gives

T
2

(
Ax(n) + bu(n) + Ax(n− 1) + bu(n− 1)

)
= x(n)− x(n− 1) (4)

which can be solved for x(n) to obtain the state update equation

x(n) =
(

2
T
I −A

)−1

·
(
bu(n) + ( 2

T
I + A)x(n− 1) + bu(n− 1)

)
. (5)
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2.3. Canonicalization

Note that equation (5) requires not only the previous values of the
states x(n − 1), but also of the input u(n − 1) in addition to the
current input value u(n). We define the new state variable

xc(n) = T
2

( (
2
T
I + A

)
x(n) + bu(n)

)
(6)

and convert to a canonical representation by substituting

x(n) =
(

2
T
I + A

)−1 ( 2
T
xc(n)− bu(n)

)
, (7)

which leads to(
2
T
I + A

)−1 ( 2
T
xc(n)− bu(n)

)
=
(

2
T
I −A

)−1 (
bu(n) + 2

T
xc(n− 1)

)
(8)

where no references to u(n−1) occur anymore. To obtain the state
update equation, we first left-multiply with

(
2
T
I + A

)
, giving

2
T
xc(n)− bu(n) =

(
2
T
I + A

) (
2
T
I −A

)−1

·
(
bu(n) + 2

T
xc(n− 1)

)
(9)

and then solve to

xc(n) = 2
(

2
T
I −A

)−1
bu(n)

+
(

2
T
I + A

)
·
(

2
T
I −A

)−1
xc(n− 1) (10)

by using the relation(
2
T
I + A

) (
2
T
I −A

)−1
b + b = 4

T

(
2
T
I −A

)−1
b. (11)

The output equation then becomes

y(n) = 2
T
d
(

2
T
I + A

)−1
xc(n)

+
(
e− d

(
2
T
I + A

)−1
b
)
u(n) (12)

or, by substituting equation (10),

y(n) = 2
T
d
(

2
T
I −A

)−1
xc(n− 1)

+
(
e+ d

(
2
T
I −A

)−1
b
)
u(n). (13)

The latter form is advantageous because only the inverse matrix(
2
T
I −A

)−1 has to be computed for both state update and output
equation. The final discrete-time system can then be written as

xc(n) = Āxc(n− 1) + b̄u(n) (14)

y(n) = d̄xc(n− 1) + ēu(n) (15)

with

Ā =
(

2
T
I + A

) (
2
T
I −A

)−1 (16)

b̄ = 2
(

2
T
I −A

)−1
b (17)

d̄ = 2
T
d
(

2
T
I −A

)−1 (18)

ē = e+ d
(

2
T
I −A

)−1
b. (19)
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Figure 1: Schematic of the Fender tone stack, type AA763.

2.4. Schedule for linear Systems

The schedule for building a real-time linear system is:

1. State-space analysis of the circuit: Find a (symbolic) matrix
formulation in the continuous-time domain. The voltages
across the capacitors are defining states.

2. Perform a discretization (e.g. trapezoidal rule) to achieve
the corresponding discrete-time representation.

3. Filtering process:

• Compute the output samples for the given input.

• Update the matrix entries in case of parameter modi-
fications.

2.5. DK-method

The presented approach and its upcoming non-linear extension
(section §4) is similar to the DK-method [2], but with some dif-
ferences concerning the discretization step and the system descrip-
tion. The DK-method makes use of discrete-time state-space mod-
els and network formulations in accordance with the Modified No-
dal Analysis, MNA. All energy storage elements have to be dis-
cretized component-wise before network analysis (e.g. trapezoidal
rule integration), capacities and inductors therefore have to be re-
placed by companion circuits. The computation is in general sim-
ilar to SPICE. A big advantage of the DK-method is the good ap-
plicability for automatization. Drawback: The MNA is a special
form of the node voltage analysis and requires one expression in
terms of Kirchhoff’s current law for each node of the circuit. Thus
even small electric circuits may result in huge, even though sparse,
matrix representations.

3. APPLICATION: FENDER TONE STACK

A good example for a highly parametric linear system is given
by the so-called tone stack, see Figure 1, which was already the
subject in various previous works, e.g. [4]. This (or a similar)
passive filter network can be found in most guitar amplifiers where
it is used as a simple equalizer. Commonly the tone stack is placed
between preamp and phase splitter. By adjusting the controls for
bass (R3), mid (R4) and treble (R2) the sound can be varied in
a wide range. The frequency responses for different parameters
are plotted exemplary in Figure 2. Note that the frequency bands
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Figure 2: Frequency response of the tone stack for different parameter sets. From left to right: bass-, mid- and treble-control varied
individually from 0 dots 1 in steps of 0.1, while the other parameters are set to middle position, value 0.5.

overlap so that changes in one frequency band will also affect the
other bands.

The components in this circuit are: resistors R0 =38 kΩ and
R1 = 100 kΩ, capacitors C1 = 250 pF, C2 = 100 nF and C3 =
47 nF. The potentiometers R2 = 250 kΩ and R4 = 10 kΩ have a
linear taper, R3 = 250 kΩ has logarithmic taper. The load RL is
assumed to be very high so that the load current can be neglected.
In this assembly the circuit corresponds to the classic Fender tone
stack, type AA763.

3.1. State-Space Model for the Tone Stack

In case of the tone stack schematic, the mesh current analysis is
well suited to develop the system equations. We will follow the
convention that all voltages and currents are direct from left to
right or from top to bottom, respectively.

We consider the first mesh being on the left side including
the signal source Vin, the internal resistance R0, continuing with
R1, C3 and the potentiometer R4. Kirchhoff’s voltage law then
postulates

− vin + vR0 + vR1 + vC3 + vR4 = 0. (20)

The voltage vR1 can be expressed by the resistor R1 and the cur-
rents through the capacitors C2 and C3. For the capacitors the
relation

iC = C · u̇C (21)

has to be used (definition of the capacitance), leading to

vR1 = R1 · (iC2 + iC3)

= R1 · C2 · v̇C2 +R1 · C3 · v̇C3. (22)

For the first mesh we therefore obtain the expression

−vC3 + vin = v̇C1 · (R0 +R4) · C1

+v̇C2 · (R0 +R1 +R4) · C2

+v̇C3 · (R0 +R1 +R4) · C3. (23)

In the same way the equations for the second and third mesh are
found. The complete system can now be described by the matrix
formulation−RmC1 (−Rm −R1)C2 (−Rm −R1)C3

−R2C1 R1C2 R1C3

R3C1 R3C2 0

 ·
v̇C1

v̇C2

v̇C3



=

0 0 1
1 −1 0
0 −1 1

 ·
vC1

vC2

vC3

+

1
0
0

 · Vin (24)

where Rm = R0 + R4. The output is the tap of potentiometer
R2, controlled by parameter α. For the voltage Vout we find the
expression

Vout = Vin − VR0 − VC1 − αVR2. (25)

3.2. Discretization

The system description in compliance with equation (1) is achieved
by multiplying the inverse of the matrix on the left side of equa-
tion (24) to both sides. Expressing the voltages VR0 and VR2 in
equation (25) by the currents through the capacitors and the resis-
tor values leads to an output description in compliance with equa-
tion (2). For the tone stack circuit we find the state matrix

A = − 1

Rx
· (26)


Rm+R1
C1

−Rm+R1
C1

R1
C1

−Rm+R1
C2

Rx+R3·(Rm+R1)
C2R3

−Rx+R1R3
C2R3

R1
C3

−Rx+R1R3
C3R3

R1R2+(R1+R2)·(Rm+R3)
C3R3


and the input, output and feedthrough vectors

b =


R1
C1Rx

− R1
C2Rx

R1+R2
C3Rx

 , (27)

d =
1

Rx
·

 −Rx + αR2 · (Rm +R1) +R0R1

−αR2 · (Rm +R1)−R0R1

R0R1 +R1αR2 +R0R2

T

(28)

and

e =

(
Rx −R1αR2 −R0R1 −R0R2

Rx

)
(29)

with Rx = R0R1 +R0R2 +R1R4 +R2R4 +R1R2.
The state vector x contains the voltages across the capacitors

x =
(
vC1 vC2 vC3

)T (30)
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and the source is the input voltage u = Vin.
By utilizing the matrix and vector formulations as given in

equation (16) to equation (19), the final discrete-time system is
easily derived. When the potentiometer values are varied, the sys-
tem matrices have to be adapted.

For comparison a system description using the DK-method
(see section §2.5) was arranged as well. The equivalent discrete
system ends up with a [8 × 8] system matrix, which has to be
inverted in case of parameter modifications.

4. STATE-SPACE REPRESENTATION OF NON-LINEAR
SYSTEMS

The proposed method from section §2 is now extended to general
systems containing non-linear elements, to enable the modeling of
circuits containing diodes, transistors or valves.

Let

ẋ = Ax + bu+ Ci(v) (31)
y = dx + eu+ fi(v) (32)
v = Gx + hu+ Ki(v) (33)

be an extension of the linear system where both the state and the
output equation contain a non-linear part i(v) that depends on v
which is calculated similarly to the output by equation (33). Note
that equation (33) is a non-linear equation in v. Discretization and
canonicalization as in section §2 yields

xc(n) = Āxc(n− 1) + b̄u(n) + C̄i(v(n)) (34)

y(n) = d̄xc(n− 1) + ēu(n) + f̄ i(v(n)) (35)

v(n) = Ḡxc(n− 1) + h̄u(n) + K̄i(v(n)) (36)

with

C̄ = 2
(

2
T
I −A

)−1
C (37)

f̄ = f + d
(

2
T
I −A

)−1
C (38)

Ḡ = 2
T
G
(

2
T
I −A

)−1 (39)

h̄ = h + G
(

2
T
I −A

)−1
b (40)

K̄ = K + G
(

2
T
I −A

)−1
C. (41)

4.1. Schedule for non-linear Systems

The computation for a non-linear system proceeds as follows:
1. State-space analysis of the circuit: Find a (symbolic) matrix

formulation in the continuous-time domain. The voltages
across the capacitors are defining states. Contributions from
non-linear elements are expressed by i(v(n)).

2. Perform the discretization (e.g. trapezoidal rule) to achieve
the discrete-time representation.

3. Filtering process:

• Solve the non-linear equation given in equation (36)
to obtain i(v(n)) from the current input u(n) and the
previous state xc(n−1). Here we exploit the fact that
equation (36) depends on xc(n− 1), not xc(n).

• Once i(v(n)) has been determined, the new state and
the output are computed with equations (34) and (35).

• Update the matrix entries in case of parameter changes.

5. APPLICATION: MARSHALL JCM900 PREAMP

The second circuit we want to discuss is part of a Marshall am-
plifier, namely the “A”-channel of the JCM900 Hi Gain Dual Re-
verb head, type 4100, see Figure 3. This is a good example for
a parametric, non-linear circuit. The distortion is produced by a
simple LED network in the feedback path, limiting the amplitude
to a maximum of approximately 2×1.6 V. With the variable re-
sistor R3 (titled gain on the amplifier, parameter α in the simu-
lation) the sound can be controlled from clean to medium drive
and crunch rhythm [5]. The resistor values are: R1 =22 kΩ,

Vin(t)

C1

R1

R2 (1− α)R3 αR3

C2 C3

−

+

Vout(t)

Figure 3: Schematic of the non-linear part of the JCM900’s "A"-
channel preamp.

R2 =12 kΩ and the potentiometer R3 =220 kΩ. The gain in-
creases with higher values of α. The capacitors are: C1 =47 nF,
C2 =1 nF and C3 =47 pF. The diodes in the original circuit are
3 mm LEDs with red color. The open-loop gain of the used op-
erational amplifier (type M5201) is significantly higher than the
maximal gain that can be achieved in this circuit, estimated by
G ≈ 20 · log(R3

R2
) = 25 dB. In addition, the output amplitude is

small compared to the supply voltage. For that reason the opera-
tional amplifier is assumed to be ideal for the simulation, i.e. no
voltage drop between the inputs.

Modeling the Nonlinear Part

The nonlinearity is given as an antiparallel-series combination of
four red LEDs, see the schematic in Figure 3. For the simulation,
the LEDs are assumed to be identical such that the voltage drop
across one diode is vC3/2. The current iD1 through one diode for
a given voltage VF can be calculated by the Shockley-equation

iD1 = Is ·
(
e

VF
n·Vt − 1

)
(42)

with the reverse saturation current Is = 6.5× 10−20 A, the ther-
mal voltage Vt = 25.3 mV and the emission coefficient n = 1.68.
The capacitance of the pn-junction as well as a series resistance is
neglected.

The I-V-transfer function of one LED is shown in Figure 4.
For the four-diode combination the non-linear current can be com-
bined and expressed as

i = iD = Is · (e
VC3
2n·Vt − 1)− Is · (e

−VC3
2n·Vt − 1)

= 2Is · sinh
(
VC3
2n·Vt

)
. (43)
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Adjustment of the Potentiometer

The potentiometer used in the original amplifier has a S-shaped
characteristic. For correct simulation results the control parame-
ter α has to be adjusted. The interpolated function mapping the
position of the gain knob to α values, extracted from pointwise
measurements, is depicted in Figure 4.
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Figure 4: On the left: I-V transfer function for one red LED. On
the right: Mapping gain to α (interpolated).

5.1. State-Space Model for the JCM900 Preamp

Just like for the tone stack, we start the circuit analysis by express-
ing the currents through the resistors in terms of the input voltage
u and the voltages across the capacitors. This yields the matrix
formulation

A =


− R1+R2
C1R1R2

− 1
R2C1

0

− 1
R2C2

− R2+(1−α)R3
(1−α)R2R3C2

0

− 1
R2C3

− 1
R2C3

− 1
αR3C3

 ,

b =


R1+R2
C1R1R2

1
C2R2

1
C3R2

 , C =

 0

0

− 1
C3

 (44)

in the nomenclature of section §4 with x =
(
vC1 vC2 vC3

)T .
The output equation is easily derived, as one terminal of C3

is at the output node, while the other is at the reference potential
(assuming again no voltage drop between the op amp inputs), so
that y = −vC3 , i.e. d =

(
0 0 −1

)
, e = 0 and f = 0.

Likewise, the current through the diodes is driven by the volt-
age across C3, giving G =

(
0 0 1

)
, h = 0 and K = 0.

5.2. Discretization with efficient handling of parameter α

Again the introduced user-controllable parameter α leads to prob-
lems for the discretization. Whenever α changes, the coefficients
of the discrete system have to be recomputed. Especially the ma-
trix inversion (T

2
I −A)−1 seems to be quite unattractive.

Fortunately, we can exploit that A has a special structure,

namely, it can be rewritten as

A = −

C1 0 0
0 C2 0
0 0 C3

−1 1
R1

0 0

0 1
(1−α)R3

0

0 0 1
αR3


+

1

R2

1
1
1

(1 1 0
) . (45)

The matrix inversion can then be rewritten as

( 2
T
I −A)−1 =β−1

1 0 0
0 β−1

2 0
0 0 β−1

3

+
1

R2

1
1
1

(1 1 0
)−1

·

C1 0 0
0 C2 0
0 0 C3

 (46)

with

β1 =
R1T

2C1R1 + T
, β2 =

(1− α)R3T

2(1− α)C2R3 + T
and

β3 =
αR3T

2αC3R3 + T
. (47)

The inversion now lends itself to applying the Sherman-Morrison
formula, finally giving

(T
2
I −A)−1 =

I − 1

R2 + β1 + β2

β1β2
β3

(1 1 0
)

·

β1C1 0 0
0 β2C2 0
0 0 β3C3

 . (48)

This allows to derive the following relatively simple formulas
for the coefficients:

Ā =


2C1R1−T
2C1R1+T

0 0

0 2(1−α)C2R3−T
2(1−α)C2R3+T

0

0 0 2αC3R3−T
2αC3R3+T


− 4

R1T · (R2 + β1 + β2)

β1β2
β3

(β1C1 β2C2 0
)

b̄ = − 2

R1 · (R2 + β1 + β2)

β1 · (R1 +R2 + β2)
β2 · (R1 − β1)
β3 · (R1 − β1)


C̄ = −2

 0
0
β3


d̄ = 2

T
·
(
β1C1 · β3

R2+β1+β2
β2C2 · β3

R2+β1+β2
−β3C3

)
ē = − β3(R1 − β1)

(R2 + β1 + β2)R1

f̄ = β3

Ḡ = −d̄
h̄ = −ē
K̄ = −β3
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Figure 5: Frequency response comparison: LT Spice simulation as
reference (gray) and state-space model (dashed black) of the tone
stack circuit. Bass-, mid- and treble-control were set to 0.5.

Again the DK-method is applied to the same system to esti-
mate the computational costs for the recalculation of coefficients.
The equivalent discrete system has the dimension [7 × 7]. Using
the formulation as above the dimensions are reduced and the nu-
merical inversion can be avoided. The circumvention of the matrix
inversion can of course not be generalized to other circuits, but the
methodology will be similar.

6. RESULTS

To evaluate how true to original the simulations perform, the out-
put data has been compared to measurements or other reliable ref-
erences.

6.1. Tone Stack Simulation

The tone stack is a simple linear system, therefore it is uncompli-
cated to find reference data. The frequency responses calculated
with the simulation are compared to responses from the software
tool The Tone Stack Calculator [6] and a simulation using LT Spice
IV and show good match, as shown in Figure 5.

6.2. JCM900 Preamp Simulation

For the preamp circuit from section §5 the original Marshall top
is used as reference. Thus the evaluation becomes more compli-
cated concerning various aspects: First of all, the signal amplitudes
used in simulation and measurements have to fit very well. Then
one has to ensure that all component values and all parameters are
equal. Third, the measurements are done inside the noisy environ-
ment of the amplifier. Deviations can be explained by component
tolerances in the measured system and simplifications (e.g. ideal
OPA) in the simulation. All measurements and simulations are
performed with a sampling frequency fs = 1

T
= 96 kHz.

Waveforms

A qualified test signal is given by single frequency sine bursts with
an exponentially decaying envelope, which imitate the transient
shape of real guitar signals. Burst signals with various levels and

frequencies are used at different gain settings. The test set contains
all 63 possible combinations of

• amplitude at the input jack: 200 mV, 500 mV and 1 V,

• burst frequency: 500 Hz, 1 kHz and 2 kHz and

• potentiometer gain-values 4 . . . 10 (max), adjusted on the
Marshall amplifier.

The test signal is fed into the input jack of the amplifier and than
recorded simultaneously before and after the wanted preamp stage.
The signal recorded at the input of the preamp stage now can be
applied to the input of the simulation, allowing a direct comparison
with the measurement.

The dependency of the output waveform for different input
levels is displayed in Figure 6. All measurements and simulations
are performed with the same gain settings and frequency. Figure 7
shows the waveforms for different gain values. As the plots illus-
trate, a high similarity is achieved.

Harmonic Spectra

Besides the evaluation of the waveforms, the harmonic content of
the output is computed both for reference system and simulation.
By using a variant of the exponential sweep technique, introduced
by Farina [7], the harmonic impulse responses (HIR) can be mea-
sured [8]. The related harmonic transfer functions give explicit
information about the harmonic distortion and can be considered
as a form of fingerprint describing the static part of the nonlinearity
as mentioned in [9].

Figures 8(a) and 8(b) show the harmonic spectra when the
gain-knob is turned to 6 of 10. The fundamental frequency re-
sponse (in black) as well as the strong odd components (in dashed
gray) are in good accordance. For the minor even harmonic com-
ponents there is no observable similarity.

In Figures 8(c) and 8(d) both reference and simulation are ad-
justed to maximum gain, 10 of 10. The fundamental frequency re-
sponse, all odd components as well as second and forth harmonic
(k2, k4) have a close match. Again there is no visible similarity for
the higher order even harmonics. Please note: Because the stim-
ulating signal was fed to the input jack, the (linear) influence of
the pre-located input stage is also captured in these plots. It is no-
ticeable that the even components depart from the measurements.
One possible explanation is the fact that the LEDs in the origi-
nal circuit are not exactly equal, so that the nonlinearity is slightly
asymmetric and not ideally symmetric.

Guitar Music

In addition some sound clips of electric guitar playing are recorded.
The clips are available on our homepage

http://ant.hsu-hh.de/dafx10

Please note that a guitar signal recorded at this point, without the
influence of the subsequent amplifier stages and the loudspeaker,
will not sound very pleasant. On that account all sound clips were
afterwards processed with a loudspeaker simulation of a typical
guitar cabinet for enhancement. The comparison supports the good
conformance of the results.
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Figure 6: Waveform comparison of measurement (gray) and simulation (dashed black). Stimulation with sine burst (solid black) with
frequency 1 kHz for gain 8 of 10. From left to right: input level 200 mV, 500 mV and 1 V.
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Figure 7: Waveform comparison of measurement (gray) and simulation (dashed black). Stimulation with sine burst (solid black) with
frequency 500 Hz and input level 500 mV. On the left: gain value 4 of 10, mid: 7 of 10 and on the right: 10 of 10.

7. CONCLUSIONS

A state-space representation for the digital simulation of analog
audio circuits was presented and extended to a canonical and min-
imized formulation. Descriptions for linear and non-linear sys-
tems were given and derived step-by-step. It was pointed out that
parametric components like potentiometers may lead to either high
computational costs or high memory requirements. With the lin-
ear passive filter network tone stack and the non-linear distorting
preamp two parametric subcircuits found in typical guitar ampli-
fiers were analyzed as examples.

Solutions for the simulation of both systems using state-space
representations and trapezoidal rule discretization were presented
and explained. To evaluate how true to original the simulations
perform, the output data was compared to reference data, mainly in
terms of measurements from the accordant original circuit. For the
distorted preamp, the waveforms of the output signals processed
by the simulation and measured in the reference system were in
good accordance for different test signals. The harmonic spectra

showed a good match, too. Some short music samples of an elec-
tric guitar bring the comparison to completion.

It was shown that the computational costs in case of recal-
culation of the coefficients are reduced compared to the related
DK-method, due to the minimized matrix formulations. Thus this
method is applicable for real-time simulation. A drawback is that
the network analysis is more complicated and has to be done man-
ually. Nevertheless the presented method is well applicable for the
simulation of parametric circuits and provides good results.
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