

Sonic Interaction Design: New applications and challenges for Interactive Sonification

Thomas Hermann Ambient Intelligence Group – CITEC Bielefeld University · Germany

Keynote presentation – DAFx 2010 – Graz – 2010-09-07

CITEC

Imagine...

Sonification – What and Why?

Sound is a neglected modality!

Benefits:

 neglected resource, backgrounding, habituation, high timeresolution, holistic listening, direction of attention, highly developed listening skills, auditory gestalt formation, etc

Sound has a long tradition in Science

- Stethoscope
- Geiger Counter
- Machine Diagnostics
- Sonification extends our listening skills to 'normaly silent' domains

Outline

1. Sonic Interaction Design and Sonification

- Definition, Taxonomy, Sonification Techniques
- The Importance of Interaction in Sonification
- Selected application examples

2. Model-Based Sonification

- Examples: Data Sonogram Model / Particle Trajectories / GNGS
- 3. Discussion
- 4. Guidelines for Designing Auditory Interface
- 5. SID & Sonification for Ambient Intelligence

- Def.: SID is the exploitation of sound as channel conveying informational, aesthetic and/or emotional content in interactive contexts
 - EU COST Action IC0601 (SID)
 www.cost-sid.org
- Main areas:
 - 1. Perceptual, cognitive, and emotional study of sonic interactions
 - 2. Product Sound Design
 - 3. Interactive Arts and Music
 - 4. Sonification
- Infinite possibilities for today's artefacts!

New Definition: Sonification

(Hermann, 2008, ICAD)

A technique that

- uses data as input, and
- generates sound signals (eventually in response to optional additional excitation or triggering)

may be called sonification, if and only if

- 1. The sound reflects **objective** properties or relations in the input data.
- 2. The transformation is systematic.
- 3. The sonification is reproducible.
- 4. The system can intentionally be used with different data.

Sonification Techniques – An Overview

Sonification: Generality equal to visualization!

- Audification:
 - Earthquakes (Dombois)

- Auditory Icons:
 - Computer Desktop (Rocchesso et al.)

event_05 al-time semification of 05 ever

- Earcons: 🔊 🔊 🔊
- Parameter Mapping: data mapped to sonic features
 - Iris data set
- MBS: data becomes interactable ...later

Universität Bielefeld Ambient Intelligence Group

Interactive Sonification

- Passive Sounds vs. Active Sounds
- Multiple Sonic Views (Aural Perspectives) required
 - And queried by interaction
- Interaction binds multiple sensory signals into perceptual multimodal units
- Interaction embeds us into a closed-loop
 - We feel more in control
 - Higher flow / satisfaction
 - Increased performance / less annoyance
 - The more we can interact with sound the better

CITEC

Closed Interaction Loops in Auditory Displays

Sonification of Human EEG [for monitoring, diagnosis, analysis]

Analysis of Epileptic EEG

- Parameter Mapping Sonification:
- Event-based Sonification: (
- Combined Patient Observation & Data Inspection

Vocal EEG Sonification

- Stability: Acoustic Convergence
- Familiar Sound Domain (memorize)
- Built-in imitation capabilities (verbalize, point)
- Absence:
 Artefact:

 Sleep:
 Sleep:
- Stable classification: dist.mat: °

Tangible Interactive Sonification [Interactive Sonification]

TISon

Hermann, Bovermann, Riedenklau, Ritter

2007 Bielefeld University

 Data channels become physical objects

- Parameter Selection is transformed into physical Interaction
- Goal: Intuitive Optimization of Contrast between normal / pathologic data examples

Weather Forecast Sonification [rapid overview]

- Wettervorhörsage"
- Broadcasted 6 months daily on Hertz 87.9
- Complex information conveyed in 12 s
- Mapping & Auditory Icons
- Examples:
 - Nice spring day
 - Ugly November day
- Data-driven Emoticons

Sonic Function [navigation / exploration] with Florian Grond & Trixi Drossard

- Sonification of Mathematical Functions for Visually Impaired Pupils
- Pedagogic Applications
- Pupils are able to detect / count / identify extrema in functions

Real-tim

Sonification

Markers for Body Motion Tracking

(VICON System)

CITEC

CLAINT – Closed-Loop Auditory Interaction [auditory biofeedback]

Tobias Grosshauser

How can users profit from auditory biofeedback?

- Skill Learning in Dance and Music
- Support Physiotherapy
- Basic Research in Closed-Loop Interaction
- Augmented Tools

German Wheel Sonification

Jessica Hummel

Can sonification of the wheel status support the accuracy of movement executions?

YES!

Model-based Sonification for non-time-indexed complex data

Virtual Data Object

in Model Space

Dynamic System

set

encodes

model

behavior

brain adapted

to decode

sound field

How to sonify high-dim. data?

CITEC

How do we hear? (

MBS Ingredients

- Model Setup
- Model Dynamics
- Initial Conditions
- Excitation / Interfaces
- I ink-Variables
- Listener Characteristics

CITEC

Data Sonogram Sonification Model

Model Setup:

Point Masses in Data Space

Dynamics: Newton's laws

- Wave Propagation
- Spring Forces

Excitation:

Shock Wave (pressure wave)

Link-Variables:

Point mass elongations

Listener Characteristics:

- binaural
- Orientation along PCA#1

Data Sonogram Examples

Breast Cancer Diagnosis

CITEC

- N = 700, d = 10
- Distances in high.dim. spaces

Iris data set

- N = 150, d = 5, 3 sorts of plants
- Audible class separation

Clustered data in R³

Audible cluster variance

CITEC

Tangible Data Scanning (TDS)

with Bovermann, Riedenklau

- Data become real localized physical objects
- TDS exploits human manipulation capabilities
- Spatial memory helps to interprete data

Particle Trajectory Sonification Model for Cluster Analysis

Setup: Particles in Data Potential

$$V(\mathbf{x}) = \sum_{\alpha=1}^{M} \phi(\|\mathbf{x} - \mathbf{x}_i\|) \quad , \quad \phi(r) = -N \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

Dynamics: Newton's Law + damping

$$m\ddot{\mathbf{x}}(t) = -\nabla_x V(\mathbf{x}) - \gamma \dot{\mathbf{x}}(t)$$

Excitation:

- Particle Injection
- Energy Injection (shake, hammer)

Link-Variables:

Sum of particles' kinetic energy

Particle Trajectory Sonification Model (cont.)

- Typical Particle behavior: (
- Model Parameters:
 - Data mass m_d and particle mass m_p
 - Bandwidth σ
 - Friction constant γ (ο) (ο)
- Sound represents V on multiple scales in time chaotic \rightarrow timbral \rightarrow pure harmonic \rightarrow sinusoid
- Sound depends on clustering properties
 - Ensemble 1 cluster: 3 clusters:

CITEC

Particle Trajectory Sonification Model σ - sweeps

- Holistic multi-scale encoding of V
- Single particles are not very informative

Sigma sweeps:

- Decrease sigma and inject particles
- Multi-scale analysis: pitch plateaus emerge
- Auditory Gestalt Formation

Growing Neural Gas (GNG) Sonification for Data Dimensionality Analysis

Energy Flow

CITEC

- "Shaking/Hitting" Data using the Growing Neural Gas
- The invisible feature of intrinisic dimensionality becomes audible
- 2d: 💽 4d: 💽 8d: 💽
- Network Growth Sonification for convergence monitoring:

 $\frac{dE_i}{dt} = -gE(t) - \sum q(E_i(t) - E_j(t))$

 $j \in I_N(i)$

Multi-Touch Interaction with Growing Neural Gas Sonifications with Kolbe & Tünnermann

Discussion (MBS)

Benefits of MBS

- Generality: applicable to different data sets
- Excitatory Interaction built-in
- Design-once-Use-often
- Fewer Control Parameters than in ParMap
- Supports Auditory Learning
- Naturally complex sonic responses

Comparison to ParMap and Physical Models

- Whereas in ParMap in MBS
 Data controls a Sounding Object, Data becomes the Sounding Object (and playing is left to the exploring user)
- Discussion: MBS vs ParMap vs Physical Models

GUIDELINES: Interdisciplinary Dialogue

Functional Aspects

- Application Domain Experts
- Sonification Experts
- Users
- Programmers

But also:

- Designers
- Psychologists for Evaluation
- Interactional Linguistics
- Cultural Studies

Asthethic / Emotional / Holistic Aspects

GUIDELINE Aim at Holistic and Balanced Multimodal Displays

- Interweave Modalities
 - → Partial Redundancy
 - → Coherence / Coupling
- Acknowledge Human Dynamic Attention Allocation during task-oriented procedures

CITEC

 Consider that sound is only a part of the multimodal experience

GUIDELINE Address the Users' Learning Capacity

Develop Sonifications that are useful even for beginners

 But also provide the richness enabling users to improve their interaction skills infinitely...

Accomplished by:

- Stability of the interface
- Signal-near representation
- Close coupling to interaction
- Sonic complexity
- → Model-based approaches (MBS)

Musical Instrument Interaction as good example

Outlook: SID & Sonification for Ambient Intelligence

• Aml refers to electronic environments that are sensitive and responsive to the presence of people

Perspectives of SID for Ambient Intelligence

- Smart Rooms, Future Living
- Ambient Information Awareness
- Shared Presence
- Sound for Augmented-Reality
- Sound for Human-Robot Interaction

Acoustic Augmentation for Ambient Information Awareness

Bovermann, Tünnermann

CITEC

tacTiles – tactile sensitive furniture

- Flexible smart skin for furniture, Low-cost Open Hardware
- Monitoring Activity in large office spaces
- Application: avoid rigid working style

Conclusion: Synergies between DAFx & SID / Sonification

SID needs DAFx for efficient, high quality sound

 Physical Modelling for better Parameterized Auditory Icons

• MBS can profit from DAFx

- Physical model developers candidate MBS developers
- MBS is still too computationally expensive: DAFx-Know-How for real-time implementations
- DAFx can profit from SID know-how to evaluate sound in interactive contexts
- Data Aesthetics': Models do not necessarily need to sound like real-world sound
 - This opens a new dimension for physical model design

Questions? Comments?

