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ABSTRACT

Tremolo is usually regarded as belonging to the domain of note
embellishments. Rapid tremolo, taken into the audio range,is an
interesting synthesis technique which is related to FM and granular
synthesis. We present a tremolo oscillator, capable of a wide range
of sonorities, and illustrate some of its capabilities in applications
such as feature-based synthesis and sonification. A reference im-
plementation in Csound is given. The tremolo oscillator is then
put into a feedback system, where its output is subject to feature
extraction, and the extracted features in turn are mapped toits con-
trol parameters. Chaotic orbits in this feedback system guarantee
continuous variation, in contrast to the trivial periodic patterns that
are easily obtained.

1. INTRODUCTION

There are at least two acceptations of the word tremolo: either it
is understood to be a rapid alteration between two pitches, as in
a trill, but possibly with a wider pitch separation, or it is taken to
be a rapid amplitude variation, analogous to the pitch variation of
vibrato. It is the pitch alteration that forms the basis of the tremolo
oscillator.

A deceptively simple instrument, an oscillator which switches
between two pitches, can produce a more varied range of sounds
than one might at first suspect. Tremolo is a built in capability
of many synthesizers, where it is realised as a square wave mod-
ulation of frequency and carried out by an LFO. A glide or por-
tamento parameter is also frequently seen in synthesizers,where
its function is to produce smooth pitch transitions (glissandi) be-
tween notes played legato. An obvious realisation of portamento
is to use a lowpass filter to smooth the frequency control function.
Apart from lowpass filtering, other filters can also be used topro-
duce characteristic effects when applied to the frequency control
function. These ideas are further explored in section 2, where the
tremolo oscillator is introduced.

An instrument’s full utility is only seen in concrete applica-
tions. We discuss how the tremolo oscillator may be used for
sonification, in feature-based synthesis [1], and as part ofa self-
organising system, which combines aspects of algorithmic com-
position, chaotic systems, and sound synthesis.

More or less similar self-organising synthesis systems have
been explored by other composers, sometimes with referenceto
cybernetics and ecological systems, as in the works of Di Scipio
[2] and Bökesoy [3]. Other examples include the Gendyn system
of Xenakis [4], where a waveform continually undergoes random
perturbations, causing drift in pitch and timbre, and a synthesis
system developed by Arun Chandra, also based on incremental

modifications of waveforms with several voices acting differently
depending on the current state of other voices [5].

The self-organising tremolo oscillator put into a feedbackloop
is a closed system; it doesn’t take any input once the initialparam-
eters have been specified. The greatest challenge for such closed
self-organising systems is how to make them produce an interest-
ing output in the absence of continuous input. We conjecturethat
the system is capable of producing non-trivial output only when
it reaches a chaotic regime. Among the easily achieved trivial re-
sults are fixed points, cycles, and transients which eventually set-
tle down on some regular pattern. That the system reaches a fixed
point means that it gets stuck on some particular parameter values.

For effective usage of a synthesis model, one should know how
control parameters map to perceived qualities. This is particularly
true when the synthesis model is itself part of a more complex
system. So first we give the details of how the tremolo oscillator
works, then in section 3 its application in feature-based synthesis
and sonification is briefly discussed. Finally, in section 4 we dis-
cuss various ways the tremolo oscillator can be used in a feedback
system. In particular, the rate at which the feedback occursis an
important factor.

2. TREMOLO OSCILLATOR

The oscillator is designed to produce a tremolo between two tones.
The tones could have any waveform, but in the following we will
use a sinusoid. Fast modulation will cause audio rate FM. Smooth-
ing of the frequency variable produces interesting glide effects,
which are obtained by passing the instantaneous frequency vari-
able through a one-pole lowpass filter.

When two alternating tones are played in sequence, various
percepts arise depending on their pitch separation, and therep-
etition rate of the pattern. As has been demonstrated in several
auditory experiments, a tone sequence with small pitch separation
will tend to be heard as one single stream, whereas if the interval
widens, they may instead segregate and form two streams, if the
repetition rate is kept constant [6]. As the repetition rateincreases,
the percept fuses to a single complex tone.

To begin with, let us consider an oscillator with four control
parameters, two for the frequencies,F1 andF2, and two for their
respective durations,t1andt2. Then the generated sinusoid at sam-
pling frequencyfs is:

xn = sin(ϕn), (1)

ϕn = ϕn−1 +
2π

fs

fn (2)
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Figure 1: Spectrum showing two formants, using the parameters
fc = 100, F1 = 750, andF2 = 1250 Hz.

with instantaneous frequencyfn. To produce a smoother glide, the
frequency is filtered,

fn = (1 − b)gn + bfn−1, b ∈ [0, 1) (3)

so thatb controls the smoothness. The tremolo is given by

gn =

(

F1 if n(modT ) < t1

F2 if n(modT ) ≥ t1
(4)

whereT = t1 + t2 is the overall period.

2.1. Audio Rate Tremolo

When the tremolo reaches audio rates, its two tones become per-
ceptually fused. Assuming that there is no frequency smoothing,
and further that bothF1 andF2 are exact multiples of the funda-
mental frequencyfo = 1/T , a pitched sound will be heard atfo

with formants atF1 andF2. If the fundamental does not approx-
imately divide both of the formant frequencies, the sound instead
becomes inharmonic, but the formants will still be more or less
present.

Audio rate tremolo can be understood as FM with a square
wave modulator. When thought of this way, it becomes apparent
that the carrier frequency is

fc = 1/T, (5)

the modulator frequency is a square wave with fundamental atthe
average frequency,

fm =
F 1 + F2

2
, (6)

and the deviation

δ =
|F1 − F2|

2
(7)

determins the modulation strength. So, in this formulation,

xn = sin(ωcn +
δ

fm

gn) (8)

whereωc = 2πfc/fs. Judging from the harmonic content of the
geometric square wavegn with no aliasing suppression, this FM
equation would seem to produce intolerable aliasing. Thereis a
simple trick to use in situations where either the amplitudeor the
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Figure 2: Tone durations crossfaded during sound, emphasising
F1 at the beginning andF2 at the end. Here withfc = 400 Hz,
F1 = 1200, F2 = 3200 Hz.

frequency needs to be changed suddenly. In the case of ampli-
tude, one would wait until a zero crossing, where the sudden am-
plitude change will do least harm. Similarly, since a suddenfre-
quency change is associated with a discontinuous first derivative,
the frequency can be swapped at positive or negative peaks ofthe
waveform, where its derivative vanishes. In this oscillator played
with an audio rate tremolo however, the benefit from switching
frequency at signal peaks is just as much reduced by the jitter it
causes. It can be used as an effect, potentially leading to longer in-
tervals between frequency changes and a staggered sonic contour
if any parameters change dynamically.

As long as the carrier is lower than bothF1 andF2, there can
be formants at these frequencies, as is seen in figure 1. If, however,
fc > min(F1, F2), then less than one whole period of eitherF1 or
F2 will be covered until the instantaneous frequency is switched.
This will produce a spectrum with a strong component atfm, and
pairs of partials at frequencies

k(fc − ǫ) ± fm, k = 1, 2, 3, . . . , (9)

whereǫ is a comparatively small positive number causing a down-
wards shift of the partials, which has been experimentally observed.

The effect of unequal durations for the two tones can be de-
rived by introducing weighting factors according to their propor-
tions ti/T . An effect akin to Shepard tones can be heard ifT is
kept constant, but the proportional durations of the two tones are
changed, so thatt1 = wT/2 andt2 = (1−w)T/2, for w ∈ [0, 1].
When sweepingw across this range, there is a glissando combined
with a refilling of lower partials (figure 2).

2.2. Filtering the control frequency

The effect of lowpass filtering the instantaneous frequencyis obvi-
ous; it simply makes the transitions smoother. Note that as the in-
stant frequency curve is smoothed, the square wave not only looses
strength in high partials, but its amplitude also decreases. Thus, in
the limit of a highly smoothed square wave, we have a weakly
modulated sinusoid atfm Hz, which now plays the role of carrier,
with modulation atfc Hz. As noted, the geometric square wave
will introduce aliasing problems, which are particularly annoying
in audio rate modulation. Here the lowpass filtering of the con-
trol frequency comes to rescue; even modest filtering (with small
values ofb in eq. 3) improves the situation.

Allpass filters with audio rate coefficient modulation have re-
cently been introduced as a synthesis or processing method [7].
We propose a different nonstandard usage—passing the instanta-
neous frequency control function through an allpass filter.Here we
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Figure 3:Square wave with (a) allpass and (b) bandpass filter.

use the second order allpass filter with tunable parameters.Since
a second order allpass filterA(z) can be used for bandpass or ban-
dreject filters [8] withH(z) = (1 ∓ A(z))/2 (subtract for band-
pass, add for bandreject), we borrow the corresponding terms cen-
ter frequency and bandwidth although they only apply to the phase
response ofA(z). The interest of submitting the square wave in-
stantaneous frequency to an allpass filter is that it introduces oscil-
lations at the center frequency. It could be tuned to low frequen-
cies for vibrato effects, or audio frequencies for extra modulation.
The bandwidth parameter controls a trade-off between large, but
fast-decaying oscillations when set to large values (proportional to
the center frequency), and smaller amplitude, but more persistent
oscillations for narrow bandwidths.

As can be seen in figure 3, the allpass causes the signal to
oscillate in the direction opposite to the jump. To produce an os-
cillation in the same direction, thus giving a smoother profile, one
can use the filter2I(z) − A(z), whereI is the identity operator.
This is a kind of bandpass filter, combined with unit gain at DC,
which is the crucial design criterion here. The peak gain of the fil-
ter at the resonant frequency is also a useful parameter to control.
To do so, just mix the direct signal with more or less of its band-
pass filtered version (ρ ≥ 0 is the amount of bandpass, orρ < 0
for bandreject):

H(z) = (1 + ρ)I(z) − ρA(z), ρ ∈ [−1, 1] (10)

Particularly for low frequency resonances, the filter driven by
the square wave will exhibit a start transient before it settles into
a stable oscillation pattern. It is also worth pointing out that the
visually edgy curve in the top of figure 3 does not necessarilycor-
respond to a perceptually more edgy pitch profile than the curve in
the bottom of the figure.

2.3. Comparison with granular synthesis

For slow tremolo rates, the impression of the tremolo may be sim-
ilar to that obtained by granular synthesis of two alternating tones.
In this case, each tone is multiplied with a window, and placed
in temporal succession, possibly with some overlap. With granu-
lar synthesis, the phase could run independently in two oscillators,
which are tapped in turn to the output stream. If adjacent (i.e. non-
overlapping) rectangular windows are used, this formulation will
introduce phase discontinuities.

If the granular synthesis is carried out with half-overlapping
hanning windows, the result is in fact identical to mixing two am-
plitude modulated sinusoids. Then the signal becomes

instr 1 ; TREMOLO OSCILLATOR

iamp = p4 ; amplitude
ifc = p5 ; 1/T, carrier (Hz)
ifm = p6 ; (F1+F2)/2, modulation (Hz)
idev = p7 ; |F1-F2|/2, deviation (Hz)
ita = p8 ; t1/T, dur. prop. (0,1)
iB = p9 ; filter-coef (0,1)

kf1 init 0
kph phasor ifc
iF1 = ifm - idev
iF2 = ifm + idev
kg = (kph < ita) ? iF1 : iF2
kfrq = (1-iB)*kg + iB*kf1
kf1 = kfrq
aos oscil iamp, kfrq, 1 ; sinusoid
kl linen 1, 0.01, p3, 0.02

out kl*aos
endin

Figure 4:Csound instrument.

x(t) = A(t) cos(ω1t) + (1 − A(t)) cos(ω2t) (11)

A(t) =
1

2
(1 − cos(ωct)) (12)

which produces a spectrum with six components, three partials
symmetrically situated around each formant frequency. If the for-
mantsω1, ω2 are integer multiples of the fundamentalωc, the spec-
trum is harmonic with a clear pitch.

Another related way to achieve just one formant in an har-
monic sound is to set the amplitude to zero for the second tone.
Now the repetition rate is the fundamental, and the frequency of
the single grain determins the formant. Its bandwidth will be re-
lated to the time proportion of tone versus gap; the shorter the
tone, the wider its bandwidth. By introducing the second tone
again, but with possibly asymmetric time proportions and unequal
amplitudes, various balances between the two formants can be
created—but there is an inevitable trade-off: as the bandwidth of
one formant narrows, the bandwidth of the other is bound to in-
crease (provided the two grains do not overlap). Note that this
differs from classical formant techniques such as FOF [9], which
only introduces one formant per oscillator.

For an extension to more than two formants, a longer tone
sequence, possibly with stochastic pitch clouds, could replace the
two tone sequence. Clarence Barlow has used such techniquesin
some of his compositions [10].

2.4. Csound implementation

A stripped-down version of the tremolo oscillator, with lowpass fil-
tering of the control frequency but no allpass filter, is shown here
in a Csound implementation (figure 4). Note that it is straightfor-
ward to change the init-rate parameters to control-rate fordynamic
changes. It may also be useful to rewrite the instrument as anop-
code. A phasor runs atfc Hz, and instead of specifyingt1, t2,
there is a parameter controlling the relative proportion ofthe first
duration.

In the Csound implementation, the control rate may be slower
than the sample rate, but it should be kept significantly higher than
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fc. For all of the applications discussed in the rest of the paper, a
version written in C++ has been used, where everything runs at the
sample rate (except for the example discussed in section 4.2).

3. DATA-DRIVEN APPLICATIONS

From the discussion of the tremolo oscillator it should be clear
that its parameters have different functions with respect to sonic
results in different regimes. For slow tremolo rates, the two pitches
at F 1, F2 are prominent, but for audio rate tremolo, these two
frequencies no longer contribute to pitch, which instead depends
on their average,fm. Even more important is the pattern rep-
etition rate1/T , which turns into the pitchfc. Hence it is far
from obvious which versions of these parameters the user should
be presented with—at least as long as both these extremes are
equally likely to be used. In a graphical user interface, a solution
could be to have one slider controllingT, and another controlling
fc = 1/T , and automatically updating the complementary param-
eter inveresly to the one that the user adjusts.

Some care has to be taken if note durations may change over
time. This is solved by only updating the internal oscillator vari-
ablest1, t2 at the end of a period. If one tries to update these dura-
tions more often than once each period, some of those parameter
updates will be inconsequential.

Next we describe experiments using the tremolo oscillator in
two cases of data-driven synthesis, with data taken either from
sound signals or any arbitrary time series. In the first case,syn-
thesis parameters are sought to match a given input sound. How
close a match is possible depends much on the synthesis modelin
question. The tremolo oscillator is a bit too limited to allow closely
matched reconstructions of arbitrary sounds, but controlling its pa-
rameters with an input sound remains an interesting controlstrat-
egy.

3.1. Feature-based synthesis

When using an external sound file as input to the tremolo oscilla-
tor, various mappings between its analysed features and thesyn-
thesis parameters are conceivable. Although the tremolo oscillator
is incapable of rendering all types of sounds, there should be some
mappings that produce closer resemblances between the input and
the synthesized sound. For artistic purposes a close mimicking of
the input may not be essential, but some of its dynamics is likely
to be captured. This is similar in spirit to an adaptive audioeffect
[11], albeit only loosely coupled to the input sound.

The problem of how to obtain close similarities to analysed
sounds does not have obvious solutions; we can only offer general
suggestions. The simplest part is to match amplitude. An RMS
extractor simply specifies what gain to apply. For pitch and spec-
tral matching there is probably no procedure that works as well
for any arbitrary sound. The zero crossing rate (ZCR) or a pitch
tracker could be used to find an average frequency, corresponding
to fm in eq. 6 above. Then an estimate of the spectral bandwidth
centered onfm could determine the values ofF1 andF2. Alterna-
tively, a pitch extractor could be mapped to the inverse repetition
rate, though, as seen above, if the sound is harmonic, this limits
the ratios of the two tones tofc to integers (or rational numbers).
If the idea of imitative synthesis is dropped, any extractedfeature
may be mapped to any control parameter in an ad hoc fashion.

3.2. Sonification

Other time series data than an audio signal can be used for time-
varying control of the synthesis parameters. We have tried asoni-
fication of sunspot numbers, recorded monthly from 1749 to the
present1. The data consists of the monthly average, and standard
deviation. In sonification, a good mapping from data to sound
should bring out patterns in the time series, and preferablyin such
a way that the sound signal easily lends itself to interpretation
if the mapping is known. In the sunspot time series, the well-
known eleven year cycles are easily found by visual inspection,
and should be at least as easy to hear.

There are no missing values in the sunspot series, which con-
tains over 3000 data points. We choose to keep the durationst1, t2
equal and constant, with a rate of, say,T = 0.01 sec, and map
the sunspot data to frequency. If the average activity is mapped
to fm, it appears appropriate to map the standard deviation to the
frequency deviationδ of eq. 7. It follows thatF1 = fm + δ and
F2 = fm − δ. For the mapping from the monthly average activity
s̄n we use

fm = fo exp(βs̄n) (13)

with some suitable constantsfo for lowest possible frequency and
β > 0, in order to scale the range of the time series (s̄n is approx-
imately in the interval (0, 250), and so is the standard deviation).
From this, the maximum frequency deviation should be less than
the lowest frequency offm, henceδ < fo.

This mapping does bring out the solar dynamics, especially the
inactive periods stand out by having the same pitch (fo), whereas
the height and shape of active periods vary.

The tremolo oscillator could be used for sonification of data
of higher dimension as well, for instance introducing a third di-
mension by varying the ratio of tone durations. Time series with
missing values could be handled by muting the oscillator at those
points. Unequal sampling intervals in the time series are also eas-
ily handled by updating parameter values at corresponding times.

4. SELF-ORGANISING COMPOSITION

Now we turn to the problem of how to achieve extended musi-
cal structures with a single tremolo oscillator. For want ofbetter
terminology, these structures may be called emergent, and the sys-
tem that generates them can be called self-organising. The point
is, that we usually do not know in advance what kind of dynamics
the system will exhibit, whence an experimental approach iscalled
for.

This algorithmic composition system consists of a signal gen-
erator (here the tremolo oscillator), a feature extractor,and a map-
ping component. The feature extractor analyses the output of the
oscillator. Then the features are mapped to the tremolo oscillator’s
synthesis parameters, which are updated. So this is a feedback
system of the type shown in figure 5.

The four parameters that control the oscillator is written as a
time dependent vector

πn = {F1, F2, t1, t2}n (14)

1The data are available at
http://spaceweather.com/glossary/sunspotnumber.html
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Figure 5:Tremolo oscillator with feedback from a feature extrac-
tor, and a mapping using the previous parameter vector and the
extracted feature.

for the two frequencies and their respective durations at time n.
The parameter vector is updated by a function of its previousstate
and an extracted feature,zn:

πn+1 = Φ(zn, πn). (15)

Below, the zero crossing rate (ZCR), fundamental frequencyand
voicing are chosen as features, because they depend on the oscil-
lator’s control parameters. The zero crossing rate is analysed over
a window of arbitrary length, and its current value is updated for
each sample.

It can be useful to have a hierarchy of control rates, from full
sample rate, optionally via a slightly slower control rate,to a block
rate which is practical for routines such as FFT-based feature ex-
traction and output to sound file. Additional irregular events pro-
vide yet another level of the (most likely) slowest control rate. If
necessary, overlapped segments could be used for higher temporal
resolution for block rate feature extraction.

With this model, a wide range of sonic characters become
available. Particularly interesting are those cases wherethe sys-
tem produces ever changing streams of pitches and timbres. Un-
der some mappings, the system may become chaotic. A simple
test for this is whether two realisations with infinitesimally differ-
ing initial conditions (π0 vs. π0 + ǫ) diverge over time. If two
such solutions are played simultaneously in stereo, at firstthey
sound identical, then the stereo image widens, and soon after they
become uncorrelated. Chaotic solutions in this tremolo oscillator
system are characterised by certain persistent patterns, forming re-
current but varying musical motives.

It should be noted that this kind of system is different from
the most familiar chaotic systems and common uses of them in
musical composition [12]. Neither is it a flow (the solution of an
ordinary differential equation), nor is it quite similar toany of the
commonly cited low dimensional maps, such as the logistic map,
circle map, etc. Even such oscillator-like systems as the circle map
[13] or the standard map are difficult to use for direct sound syn-
thesis, mainly because the phase space is full of sharply delimited
regions with strongly contrasting behaviour. The originality of a
system such as that shown in figure 5 lies in the interwoven com-
bination of timescales—the sample rate and a slower note level
rate, corresponding to the period lengthT. Note that if, in eq. 15,
the termzn is dropped, it reduces to a four-dimensional map. In
fact, the feature extractor increases the map’s dependenceon past
states, thus increasing the system’s dimension. But it alsoacts as
a smoothing filter, with the practical consequence that chaos tends
to be suppressed.
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Figure 6: Spectral bifurcation plot of the map (eq. 16, 17) as a
function of the parameterp.

4.1. Smoothed map-like system

Depending on the particular mapping, this type of systems can ex-
hibit rather different behaviour. Consider as an example that the
parameter vector is updated for each sample, and depends only on
an extracted feature, the ZCR as analysed over a 40 ms window.
There is no explicit dependence on the previous parameter state,
although it will of course be reflected in the oscillator’s output.
For the mapping, we use

Fk,n+1 = A + B cos(2πpzn − φk), k = 1, 2 (16)

with A = 600, B = 550 Hz for the frequencies, and

tk,n+1 = C − D sin(2πpzn + φk), k = 1, 2 (17)

whereC = 0.150, D = 0.145 seconds for the tone durations, and
φ1 = 0, φ2 = π/2 for phase offsets. The free parameterp controls
at once the amount of feedback and the degree of nonlinearity. All
feedback happens throughzn, which is the zero crossing rate of
the current output of the tremolo oscillator.

Traditionally, the parameter dependencies of chaotic systems
is plotted in bifurcation diagrams. An alternative to this,suitable
for acoustic systems, is the spectral bifurcation diagram [14]. It is
similar to a spectrogram, but instead of time on the horizontal axis
it shows the parameter value. Each spectral slice is plottedafter the
system’s transients have died out. A spectral bifurcation diagram
showing the amplitude spectrum at each value ofp displays some
qualitatively different behaviours; note for instance thecrossing
where the two tones have the same frequency nearp = 3 (figure
6).

Here the parameterp controls how folded or nonlinear the map
is. A similar, though much simpler system was introduced in an
earlier paper [15]. In that case, the oscillator generated asingle
sinusoid with variable frequency, controlled by a nonlinear map-
ping of its ZCR from the immediate past. A common trait in these
systems is that the nonlinearity needs to be comparatively strong
before any interesting behaviour can occur. As pointed out,the
window length of the feature extractor acts as a smoothing filter,
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which effectively quenches any chaotic tendencies unless the non-
linearity is sufficiently strong.

This smoothing effect implies that for the same mapping, the
dynamics will be very different depending on the window length
of the feature extractor. In the absence of a feature extractor in the
loop, the system is likely to produce gritty or noisy sounds already
at low degrees of nonlinearity. This happens if the equations 16–
17 are modified so that they rely on previous parameter valuesbut
not on the extracted feature; then the system produces pitched but
noisy sounds over most of the parameter range, only interrupted
by short windows of purer tones.

However, a flow-like map results if we use the Euler method
of solving an ordinary differential equation:

πn+1 = πn + hΦ(zn, πn). (18)

For the frequency variables, the flow-like map (18) is a good op-
portunity to add some extra glissandi.

4.2. Block-rate map

Finally we consider a system where the parameter update takes
place at a block rate, typically with a block sizeN of 29 – 213

samples. This is a practical consequence of using an FFT-based
feature extractor, which operates on sample buffers of suchsizes.
If the feature extractor block length is not equal to or an integer
multiple of the total periodT, this will cause an interference be-
tween these two periods, itself a source of complexity. In the ex-
ample given below,t1 = t2 = 0.05 andN = 1024 samples for
the FFT window length. With a sample rate of 48 kHz,T is 4800
samples, so there will be about 2.3 FFT frames for each tone of
the oscillator, causing a constant drift; sometimes just one tone is
covered, sometimes a bit of both.

If xn = Tr(πn) is the output of the tremolo oscillator with
given parameters, the parameter update now takes place at a much
slower rate than the sample rate, so the oscillator gets to generate
samples undisturbed by frequent parameter changes. Letzm be
the feature extracted at timesm = 0, 1, . . . where the block sam-
ple rate isfs/N so thatm = INT(n/N) where INT denotes the
integer part. Then the parameter update can still be writtenas in
eq. 15, with the main difference being the slower sample rate.

There can be many interacting components in this type of sys-
tems, making a thorough analysis quite complicated. Meanwhile,
it is precisely when the system becomes sufficiently complex, that
it begins to be capable of producing really interesting textures. In
order to keep the analysis tractable, we restrict the map to only the
frequency variables, and keep durations fixed. The tremolo oscil-
lator does use the lowpass filter, but not the allpass filter inthis
example. Consider the map

Fk,n+1 = A + K(1 − 2f̂ /fs) cos(2πv̂w − φk), (19)

again withφ1 = 0, φ2 = π/2, andA = 700, K = 650, and
wherew ≥ 0 is a free parameter. Autocorrelation is used for fea-
ture extraction, wherêf is the estimated fundamental frequency,
andv̂ ∈ [0, 1] is the voicing [11], i.e. the normalised amplitude of
the first peak of the autocorrelation function at lag corresponding
to 1/f̂ .

In figure 7, the prediction time of this system (eq. 19) is
shown. The prediction time is approximately related to the inverse
of the greatest Lyapunov exponent; it is the time before two orbits

Figure 7:Prediction time as a function of the parameterw, using
eq. 19. Solid line: without filter, dashed: with lowpass filter and
b = 0.99.

with slightly different initial conditions diverge and their distance
becomes comparable to that of the attractor [16]. Here the initial
values of the two frequencies are slightly perturbed (byǫ = 10−6);
the difference of the two trajectories thus generated is measured at
the output of the oscillator. The prediction time is taken tobe
the time until the magnitude of the difference of the two signals
becomes comparable to the signal’s amplitude. Forw < 0.3, the
prediction time appears to be unlimited; in other words, thesystem
is stable for low parameter values. Whenever the predictiontime
takes a finite value, this is an indication of chaos at that parameter
value. The effect of using the frequency smoothing filter (3)can be
seen: where there are peaks in prediction time for the unsmoothed
system, the filtered version has shorter prediction times. In other
words, the filter may induce or increase chaos. Atw = 1.17 there
is a peak in the prediction time; actually it is finite but reaches
as much as 23 seconds. The plotted prediction times in figure 7
depend on the particular initial values chosen and the size of the
perturbationǫ.

Further variations of these systems would be interesting toex-
plore: the block rate and sample rate maps may be combined, dif-
ferent mappings can be tried out, other feature extractors can be
used. And of course, other signal generators may be insertedin
place of the tremolo oscillator. There are lots of possibilities for
variation, and little is yet known about this type of systems.

5. CONCLUSIONS

A tremolo is qualitatively very different from audio rate square
wave FM, but in the tremolo oscillator, these are just the extremes
of a single parameter continuum. This simple model allows for a
surprisingly large range of sounds, which can be exploited by di-
rect control, sonification, or in a self-organising algorithmic com-
position system.

The tremolo oscillator and all applications of it has been im-
plemented in C++. For practical reasons, the program operates
offline and outputs to soundfiles only, although the instrument is
efficient enough to run in real time without any problems. The
main ideas are simple, as can be seen in the Csound implementa-
tion (section 2.4).

In the self-organising system, the feedback is taken care of
internally in the computer, with no acoustic intermediary signal.
One may question the need for feature extraction in this case. After
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all, the actual synthesis parameters are available for inspection. In
spite of that, we propose to use very simple feature extraction as
a means to simplify the control of a tremolo oscillator, seenas a
self-organising algorithmic composistion system.

Throughout this paper the tremolo oscillator has been discussed,
first on its own, then in various applications where it receives in-
put from external sources. The feedback type of system couldvery
well be extended so that it also takes an input source, be it from
a gestural controller or an audio signal. Further work will be di-
rected at other self-organising and chaotic systems, similar to the
ones presented in the last section. But it should be noted that any
signal generator may substitute for the tremolo oscillator, just as
other mappings or feature extractors may be used. Some of the
fascination with the tremolo oscillator lies in the fact that it is a
proto-sequencer, with a ridiculously short memory restricted to
two notes. However, this seems sufficient for the system to bridge
the gap from merely a generator of timbres and textures to more
complex patterns.
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