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ABSTRACT

In this paper we propose a method for automatic local tim@-ada
tation of the spectrogram of an audio signal, based on itsrdec
position within a Gabor multi-frame. The sparsity of the Ilsgsas
within each individual frame is evaluated through the Réayi
tropies measures. According to the sparsity of the decoitipos,

an optimal resolution and a reduced multi-frame are detethi
defining an adapted spectrogram with variable resolutiahreop
size.

The composition of such a reduced multi-frame allows an imme
diate definition of a dual frame: re-synthesis techniquesHis
adapted analysis are easily derived by the traditionalgphasoder
scheme.

1. INTRODUCTION

The quality of analysis and synthesis processes based @3 tim
frequency transforms is highly affected by the frames usethie
decomposition and the reconstruction of the signal. Ticud
methods based on single frames of atomic functions haverimpo
tant limits: a Gabor frame imposes a fixed resolution ovethel
time-frequency plane, while a wavelet frame gives a syridéter-
mined variation of the resolution: moreover, the user igudintly
asked to define himself the analysis window features, wisictot
always a simple task even for normally experienced users.

The resolution of such analysis methods is linked to the tme
frequency concentration of the basic functions involvethinde-
composition. Frame Theory[ ([1][2]][3]) extends the cqstcef
orthonormal basis in a Hilbert spadé: in our domain, it gives

a unified model for the description of decomposing systerseda
on atomic functions. The s¢t- }cr is aframefor H if there ex-

ist two positive non zero constantsand B, calledframe bounds
such that for allf € H,

AFIP < DK o)1 < BIFIP

yerl’

@)
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The time-frequency concentration of an atgm in a frame can
be represented through its associated Heisenberg boxa iteist-
angle drawn in the time-frequency plane whose dimensioes ar
linked respectively to the time spread of a function and ®ftk-
quency spread of its Fourier Transform. In the Short Timeriéou
Transform, the boxes associated to the transpositionseofvth-
dow functiong have fixed dimensions in every area of the time-
frequency plane: the resolution is the same for all the corapts

of the signal. In the Wavelet Transform, lower frequency pom
nents are represented with a higher time resolution, whiliglaer
frequency resolution is given for the higher frequency origss
limits are not motivated when analyzing a sound without anaip
knowledge of its features, as the best resolution tradsaféither
unique nor depending only on a single variable. Itis theretse-

ful to search for adaptive methods of sound analysis andhegit,
and for algorithms whose operations are designed to change |
cally according to the analyzed signal features.

Givenl € R, the analysis resolution can be globally modified

with a scaling operation
1 (t)
\/Z g l b

which has the effect of changing the ratio between the edfjes o
the Heisenberg box associatedgtavhile preserving its area: this
means that the global time-frequency resolution is modifigd
privileging concentration in one dimension to the detritnafrthe
other. The idea which has lead to the definitiomuiltiple Ga-
bor frames([4]) is to consider a decomposing system where all
these different resolution tradeoffs coexist, providinmaere de-
tailed description of the signal. The drawback is the inficighn

of a high redundancy which lowers the readability of the eepr
sentation: therefore methods for appropriate reductidrtbese
multiple frames are needed, typically using sparsity dete

A promising approach[(J5]) takes into accolRényi entropiesa
generalization of the Shannon entropy: given a unit-ensigyal

f € L*(R) and a time-frequency representatidp(u, £) of f the
Rényi entropy of the representation is defined fooater a > 0

)
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as follows and the squared modulus of this decomposition is the digeckt
) spectrogram,
Ha(®g) = 7—— log, //@;‘(u@)dudg. 3) PS¢[n, k] = |Sf[n, k]| . (6)
“ Given a discrete spectrogram with time stepnd frequency step

In this paper, the time-frequency representatin(u, £) consid- b as in [®), we look for an evaluation of its entropy over a darta
ered is thespectrogramas detailed in the next section. The appli- rectangle of the time-frequency plafig, t2] x [v1,12] € R?.
cation to our problem is related to the concept that miningzhe ~ The rectangle identifies a sequence of poiiits. 7> whereG =
complexity or information over a set of time-frequency egen-  {(n,k) € Z* : t1 < na < t2, v1 < kb < w2}, Through an
tations of a same signal is equivalent to maximizing the eatra- appropriate normalization we obtain the sequence
tion and peakiness of the analysis, thus selecting the éssiution PS ;[n, k]
tradeoff: a sparsity measure can consequently be definedghr PSJ?[n, k] = o — @)
an information measure. Methods inspired by this approasie h Z[n/,k/]ec PSy[n’, k']
?ﬂ%(n))v.vn to give interesting results both analytically and atically with [n, k] € G, which can be seen as a discrete probability den-

sity. As a discretization of the original continuous spegtam,
every sample irPS? is related to a time-frequency region of area
ab; we thus obtain the Rényi entropy measure [for (7) directynfr

@),

The proposed method of local time adaptation improves on
the analysis multi-frame definition: the user can specifynifi
arbitrary set of positive scaling factois C R™ corresponding
to the resolutions available; then the algorithm composferd a 1 a o
ent frames{g, ,}(n.x)cz2 With | € L andg' as in [2), and a Ha(PSy) = o 082 Z (PS7 [n, k)™ + log,(ab) . (8)
multiple Gabor frame is obtained as the union of all the given [n.klEC

frames. The main improvement in comparison with [7] is thatw  general properties of Rényi entropies can be found’in [9] [1
are not obliged to keep the same hop size within the individua 4, [11]; we recall in particular those which have a clostatien
frames analyses, thus avoiding unnecessary short hoparf®rl \yith our problem. It is easy to show that for every finite déser
windows: our method employs_ frames which share the same re-propability densityP the entropyH., (P) tends to coincide with
dundancy, so that every analysis has the same overlap, Wi @  the Shannon entropy d? as the order tends to one. Moreover,

nificant gain in computational cost. ) _ H,(P) is a non increasing function ef, so
The limit of our approach in comparison with| [6] is that we ap-

ply the entropy evaluation on the whole frequency dimensgiwms a1 < az = Hay (P) > Hay(P) . 9)
providing analyses which are adapted only in the time dinoens

On the other hand, the reduced multi-frame obtained with our As we are working with finite discrete densities we can also-co
method allows a perfect reconstruction of the signal whichat sider the caser = 0 which is simply the logarithm of the number
provided by [[6]: in our scheme, for any analysis segment a sin Of elements inP; as a consequenddo(P) > Ha(P) for every
gle original frame is retained; therefore, a re-synthesitinique ~ admissible ordetv.

can be defined as a straightforward extension of the leastsqu A third basic fact is that for every orderthe Rényi entropy., is
error estimation from the modified STFT presented]n [8] 8o o0 maximum whenP is uniformly diStribUted, while it is minimum
method can easily be used to provide common time-frequemey p  and equal to zero whef has a single non-zero value. Given a

cessing frameworks with an adaptive analysis technique. genericP and its entropyH. (P) for a certain ordery, we have
that for anyg > «

. —1 —1
2. ENTROPY EVALUATION OF A SPECTROGRAM « - Ha(P) < 1] p Hi(P). (10)
We will now describe the application of the entropy sparsia- ) ) ) )
sure on the spectrogram distribution. We will focus on ditized All of these results give useful informations on the valuéslit
spectrograms, as dealing with digital signal processingiresto  ferent measures on a single densfitys in [8), while the relations
work with sampled signals and distributions, even if for thest ~ between the entropies of two different densitiesand Q are in
part the results can be extended to the continuous case. general hard to determine analytically; in our problefhand

A Gabor frameis obtained by time shifting and frequency trans- are two spectrograms of a same signal in a same time-freguenc
posing a window functiory according to a regular lattice. Given ~@rea, based on two window functions with different scalingra

a time stepa and a frequency step we write {u, }nez = an : ) o
and{¢&; }rez = bk; these two sequences generate the nodes of the_\Nhen the spectrogram of a signal does not depend on timesisis e

time-frequency lattice for the framf@yn, i} (. x)cz2 defined as ier to find such a relation, and it turns out to be the one expuect
let PSS be the sampled spectrogram of a sinusoiaver the re-
gnin(t) = gt — un)e%riﬁkt . 4) gion G with a window functions of compact support; theRSS

is simply a translation in the frequency domainfofthe Fourier
the nodes are the centers of the Heisenberg boxes assomated transform of the window, and it is therefore time-indepenridéVe

the windows in the frame. The decomposition of a functfor choose a bounded sétof admissible scaling factors, so that the
L?(R) in a Gabor frame is simply a sampling of its STFT accord- discretized support of the scaled windowsstill remains inside
ing to such a lattice, G foranyl € L. Itis not hard to prove that the entropy of a
spectrogram taken with such a scaled versioh isf given by
Sfln. k] = (£, gnk) = / F(B)g(t —un)e > e, (5) Ho(PS$) = Ha(PSS) —log, 1 . (12)
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The sparsity measure we are using looks for the window which and the global overlap needed for the analyses. The algofikes

minimizes the entropy measure: we deduce frionh (11) thatlies
one obtained with the largest scaling factor available, &b the
largest time-support. This is coherent with our expecteéis sta-
tionary signals, such as sinusoids, are best analyzed witgra
frequency resolution, because time-independency allogsall
time resolution. Moreover, this is true for any ordeused for the
entropy calculus.

Symmetric considerations apply whenever the spectrograen o
signal does not depend on frequency, as for impulses.

the intermediate sizes so that for each signal segment ffieeedtit
frames have the same overlap between consecutive windods, a
so the same redundancy. This generates an irregular tipesiis
tion of the multi-frame elements in each signal segmentll&s i
trated in figur€Il. Such a disposition causes a differenténfte of
the boundary parts of the signal on the different framesyaeat
the beginning and the end of the signal segment have a higher e
ergy when windowed in the smaller frames. This is avoidedh wit
a preliminary weighting: the beginning and the end of eagh si
nal segment are windowed respectively with the first andrsco

A last remark regards the dependency[df (8) on the time and half of the largest analysis window. Such a weighting does no

frequency ste andb used for the discretization of the spectro-
gram. When considering signals as finite vectors, a sigraitan
Fourier Transform have the same length. Therefore in theTSTF
the window length determines the number frequency poirttie
the sampling rate sets frequency values: the definitidnisfthus
implicit in the window choice. Actually, the FFT algorithni@avs

to ask a number of frequency points larger than the signaitlte
further frequency values are obtained as an interpolatétvwémer
the original ones by properly adding zero values to the $igif
the sampling rate is fix, such a procedure establishes snhadk

a consequence of a larger number of frequency points. We
numerically verified that such a variation bfhas no impact c
the entropy calculus, so that the FFT size can be set acgora
implementation needs.

Regarding the time step we are working on the analytical dem
stration of a largely verified evidence: as long as the deoming
system is a frame the entropy measure is invariant to rechay
variation, so the choice af can be ruled by considerations on
invertibility of the decomposing frame without losing cobece
between the information measure of the different analybes is

a key point, as it states that the sparsity measure obtallosgsaa
total independence between the hop sizes of the differatyses:
with the implementation of proper structures to handle rhdp
STFTs we have obtained a more efficient algorithm in comparis
with the ones imposing a fixed hop size,[as [7].

3. ALGORITHM AND EXAMPLES

concern the decomposition for re-synthesis purpose, Hyttba
analyses used for entropy evaluations. For each signalesggme
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Figure 1: An analysis segment: time locations of the Heisenberg
boxes associated to the multi-frame used in our algorithm.

calculate the entropy of every spectrogram ag]n (8), wiigis
the rectangle with the time segment analyzed as horizoirtedrd
sion and the whole frequency lattice as vertical. The sgatseal
analysis is defined to be the one with minimum Rényi entropg: t
best window is thus defined consequently. Adaptation isiobta
over the time dimension as for every signal segment the teelec

We now summarize the main operations of the algorithm we have analysis involve the whole frequency dimension. An intéafion

developed providing examples of its application. For sppegams
calculation we have usedHanning window

h(t) = cos® (mt)x (12)

1>

=

_1
3

with y the indicator function of the specified interval, but it is-ob
viously possible to generalize the results thus obtainddeentire
class of compactly supported window functions. We createila m
tiple Gabor frame as ifil{4) using as mother functions somiedca
version ofh, obtained as in[{2) with a finite set of positive real
scaling factord..

Different spectrograms of segments of the signal are catied!
with each one of the above frames: the length of the analgsjs s
ment and the overlap between two consecutive segmentsvare gi
as parameters.

The different frames composing the multi-frame have theesam
frequency step but different time step$a; : [ € L}: the small-
est and largest window sizes are given as parameters togéathe
|L|, the number of different windows composing the multi-frame

is performed over the overlapping zones to avoid abrupdisc
nuities in the tradeoff of the resolutions.

The time adapted analysis of the global signal is finallyizeal
by opportunely assembling the slices of local sparsesysesliob-
tained with the selected windows.

In figure[3 we give a first example of an adaptive analysis per-
formed by our algorithm with eight Hanning windows of diféeit
sizes on a real instrumental sound, a B4 note played by a rbarim
this sound combines the need for a good time resolution ahthe
ment of the percussion, with that of a good frequency regwiut
on the harmonic resonance of the instrument. This is fulby pr
vided by the algorithm, as shown in the adapted spectrogtam a
the bottom of figurél3. Moreover, we see that the pre-echoeof th
analysis at the bottom of figufd 2 is completely removed in the
adapted spectrogram.

In figure[3 we give a second example with a synthetic sound, a
sinusoid with sinusoidal frequency modulation: as figuréess,
a small window is best adapted where the frequency variasion
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Figure 2: Two different spectrograms of a B4 note played by a marimligh, Manning windows of sizes 512 (top) and 4096 (bottom)
samples.

fast compared to the window length; on the other hand, tlye&dr 4. CONCLUSIONS
window is better where the signal is almost stationary.

The re-synthesis method introduced[ih [8] gives a perfect re We have presented an algorithm for time-adaptation of teetsp-
construction of the signal as a weighted expansion of théficoe  gram resolution, which can be easily integrated in exishembe-

cients of its STFT in the original analysis frame. L%t[n, k] be work for analysis, transformation and re-synthesis of aticasig-
the STFT of a signaf with window functioni and time step; nal: the adaptation is locally obtained through an entrojryi-m

fixing n, through an iFFT we have a windowed segmenf of mization within a finite set of resolutions, which can be dedity

the user or left as default. The user can also specify thedima-

fa(n,l) = h(na—=1)f(1), (13) tion and overlap of the analysis segments where entropynmear

tion is performed, to privilege more or less discontinuodapsed
whose time location depends an An immediate perfect recon-  analyses.

struction of f is given by Future improvements of this method will concern the specam
adaptation in both time and frequency dimensions: this pvib-

re Jh(na—1)fr(n,l) vide a decomposition of the signal in several layers of aigly
f) = T p2(na — ) : (14 frames, thus requiring an extension of the proposed teakrfioy

re-synthesis.

We extend the same technique using a variable windewd time

stepa according to the composition of the reduced multi-frame, 5. REFERENCES
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Figure 3: Example of an adaptive analysis performed by our algorithith @ight Hanning windows of different sizes from 512 to 4096
samples, on a B4 note played by a marimba sampled at 44.1kHzpo the best window chosen as a function of time; at thebptthe
adaptive spectrogram. The entropy ordenis= 0.7 and each analysis segment contains four frames of the lavgiadow analysis with a
two-frames overlap between consequent segments.
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Figure 4: Two different spectrograms of a sinusoid with sinusoidedjfiency modulation, with Hanning windows of sizes 512 (&oj)
4096 (bottom) samples.
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Figure 5: Example of an adaptive analysis performed by our algorithith @ight Hanning windows of different sizes from 512 to 4096
samples, on a sinusoid with sinusoidal frequency moduiatimthesized at 44.1 kHz: on top, the best window chosen @scddn of
time; at the bottom, the adaptive spectrogram. The entroggras o = 0.7 and each analysis segment contains four frames of the lkarges
window analysis with a three-frames overlap between carsggsegments.
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