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ABSTRACT

In this paper we propose a method for automatic local time adap-
tation of the spectrogram of an audio signal, based on its decom-
position within a Gabor multi-frame. The sparsity of the analyses
within each individual frame is evaluated through the Rényien-
tropies measures. According to the sparsity of the decompositions,
an optimal resolution and a reduced multi-frame are determined,
defining an adapted spectrogram with variable resolution and hop
size.
The composition of such a reduced multi-frame allows an imme-
diate definition of a dual frame: re-synthesis techniques for this
adapted analysis are easily derived by the traditional phase vocoder
scheme.

1. INTRODUCTION

The quality of analysis and synthesis processes based on time-
frequency transforms is highly affected by the frames used for the
decomposition and the reconstruction of the signal. Traditional
methods based on single frames of atomic functions have impor-
tant limits: a Gabor frame imposes a fixed resolution over allthe
time-frequency plane, while a wavelet frame gives a strictly deter-
mined variation of the resolution: moreover, the user is frequently
asked to define himself the analysis window features, which is not
always a simple task even for normally experienced users.
The resolution of such analysis methods is linked to the timeand
frequency concentration of the basic functions involved inthe de-
composition. Frame Theory ([1],[2],[3]) extends the concept of
orthonormal basis in a Hilbert spaceH : in our domain, it gives
a unified model for the description of decomposing systems based
on atomic functions. The set{φγ}γ∈Γ is aframefor H if there ex-
ist two positive non zero constantsA andB, calledframe bounds,
such that for allf ∈ H ,

A‖f‖2 ≤
∑

γ∈Γ

|〈f, φγ〉|2 ≤ B‖f‖2 . (1)
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The time-frequency concentration of an atomφγ in a frame can
be represented through its associated Heisenberg box: it isa rect-
angle drawn in the time-frequency plane whose dimensions are
linked respectively to the time spread of a function and to the fre-
quency spread of its Fourier Transform. In the Short Time Fourier
Transform, the boxes associated to the transpositions of the win-
dow functiong have fixed dimensions in every area of the time-
frequency plane: the resolution is the same for all the components
of the signal. In the Wavelet Transform, lower frequency compo-
nents are represented with a higher time resolution, while ahigher
frequency resolution is given for the higher frequency ones. This
limits are not motivated when analyzing a sound without an a priori
knowledge of its features, as the best resolution tradeoff is neither
unique nor depending only on a single variable. It is therefore use-
ful to search for adaptive methods of sound analysis and synthesis,
and for algorithms whose operations are designed to change lo-
cally according to the analyzed signal features.
Given l ∈ R

+, the analysis resolution can be globally modified
with a scaling operation

g
l(t) =

1√
l
g

(

t

l

)

, (2)

which has the effect of changing the ratio between the edges of
the Heisenberg box associated tog while preserving its area: this
means that the global time-frequency resolution is modifiedby
privileging concentration in one dimension to the detriment of the
other. The idea which has lead to the definition ofmultiple Ga-
bor frames([4]) is to consider a decomposing system where all
these different resolution tradeoffs coexist, providing amore de-
tailed description of the signal. The drawback is the introduction
of a high redundancy which lowers the readability of the repre-
sentation: therefore methods for appropriate reductions of these
multiple frames are needed, typically using sparsity criteria.
A promising approach ([5]) takes into accountRényi entropies, a
generalization of the Shannon entropy: given a unit-energysignal
f ∈ L2(R) and a time-frequency representationΦf (u, ξ) of f the
Rényi entropy of the representation is defined for anorderα > 0
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as follows

Hα(Φf ) =
1

1− α
log2

∫∫

Φα
f (u, ξ)dudξ . (3)

In this paper, the time-frequency representationΦf (u, ξ) consid-
ered is thespectrogram, as detailed in the next section. The appli-
cation to our problem is related to the concept that minimizing the
complexity or information over a set of time-frequency represen-
tations of a same signal is equivalent to maximizing the concentra-
tion and peakiness of the analysis, thus selecting the best resolution
tradeoff: a sparsity measure can consequently be defined through
an information measure. Methods inspired by this approach have
shown to give interesting results both analytically and numerically
([6]).

The proposed method of local time adaptation improves on
the analysis multi-frame definition: the user can specify a finite
arbitrary set of positive scaling factorsL ⊂ R

+ corresponding
to the resolutions available; then the algorithm composes differ-
ent frames{gln,k}(n,k)∈Z2 with l ∈ L and gl as in (2), and a
multiple Gabor frame is obtained as the union of all the given
frames. The main improvement in comparison with [7] is that we
are not obliged to keep the same hop size within the individual
frames analyses, thus avoiding unnecessary short hops for larger
windows: our method employs frames which share the same re-
dundancy, so that every analysis has the same overlap, with asig-
nificant gain in computational cost.
The limit of our approach in comparison with [6] is that we ap-
ply the entropy evaluation on the whole frequency dimension, thus
providing analyses which are adapted only in the time dimension.
On the other hand, the reduced multi-frame obtained with our
method allows a perfect reconstruction of the signal which is not
provided by [6]: in our scheme, for any analysis segment a sin-
gle original frame is retained; therefore, a re-synthesis technique
can be defined as a straightforward extension of the least square
error estimation from the modified STFT presented in [8]. So our
method can easily be used to provide common time-frequency pro-
cessing frameworks with an adaptive analysis technique.

2. ENTROPY EVALUATION OF A SPECTROGRAM

We will now describe the application of the entropy sparsitymea-
sure on the spectrogram distribution. We will focus on discretized
spectrograms, as dealing with digital signal processing requires to
work with sampled signals and distributions, even if for themost
part the results can be extended to the continuous case.
A Gabor frameis obtained by time shifting and frequency trans-
posing a window functiong according to a regular lattice. Given
a time stepa and a frequency stepb we write {un}n∈Z = an
and{ξk}k∈Z = bk; these two sequences generate the nodes of the
time-frequency lattice for the frame{gn,k}(n,k)∈Z2 defined as

gn,k(t) = g(t− un)e
2πiξkt ; (4)

the nodes are the centers of the Heisenberg boxes associatedto
the windows in the frame. The decomposition of a functionf ∈
L2(R) in a Gabor frame is simply a sampling of its STFT accord-
ing to such a lattice,

Sf [n, k] = 〈f, gn,k〉 =
∫

f(t)g(t− un)e
−2πiξktdt , (5)

and the squared modulus of this decomposition is the discretized
spectrogram,

PSf [n, k] = |Sf [n, k]|2 . (6)

Given a discrete spectrogram with time stepa and frequency step
b as in (6), we look for an evaluation of its entropy over a certain
rectangle of the time-frequency plane[t1, t2] × [ν1, ν2] ⊆ R

2.
The rectangle identifies a sequence of pointsG ⊆ Z

2 whereG =
{(n, k) ∈ Z

2 : t1 ≤ na ≤ t2, ν1 ≤ kb ≤ ν2}. Through an
appropriate normalization we obtain the sequence

PSG
f [n, k] =

PSf [n, k]
∑

[n′,k′]∈G
PSf [n′, k′]

, (7)

with [n, k] ∈ G, which can be seen as a discrete probability den-
sity. As a discretization of the original continuous spectrogram,
every sample inPSG

f is related to a time-frequency region of area
ab; we thus obtain the Rényi entropy measure for (7) directly from
(3),

Hα(PS
G
f ) =

1

1− α
log2

∑

[n,k]∈G

(PSG
f [n, k])

α + log2(ab) . (8)

General properties of Rényi entropies can be found in [9], [10]
and [11]; we recall in particular those which have a closer relation
with our problem. It is easy to show that for every finite discrete
probability densityP the entropyHα(P ) tends to coincide with
the Shannon entropy ofP as the orderα tends to one. Moreover,
Hα(P ) is a non increasing function ofα, so

α1 < α2 ⇒ Hα1
(P ) ≥ Hα2

(P ) . (9)

As we are working with finite discrete densities we can also con-
sider the caseα = 0 which is simply the logarithm of the number
of elements inP ; as a consequenceH0(P ) ≥ Hα(P ) for every
admissible orderα.
A third basic fact is that for every orderα the Rényi entropyHα is
maximum whenP is uniformly distributed, while it is minimum
and equal to zero whenP has a single non-zero value. Given a
genericP and its entropyHα(P ) for a certain orderα, we have
that for anyβ ≥ α

α− 1

α
Hα(P ) ≤ β − 1

β
Hβ(P ) . (10)

All of these results give useful informations on the values of dif-
ferent measures on a single densityP as in (8), while the relations
between the entropies of two different densitiesP andQ are in
general hard to determine analytically; in our problem,P andQ
are two spectrograms of a same signal in a same time-frequency
area, based on two window functions with different scaling as in
(2).
When the spectrogram of a signal does not depend on time it is eas-
ier to find such a relation, and it turns out to be the one expected:
let PSG

s be the sampled spectrogram of a sinusoids over the re-
gionG with a window functionh of compact support; thenPSG

s

is simply a translation in the frequency domain ofĥ, the Fourier
transform of the window, and it is therefore time-independent. We
choose a bounded setL of admissible scaling factors, so that the
discretized support of the scaled windowshl still remains inside
G for any l ∈ L. It is not hard to prove that the entropy of a
spectrogram taken with such a scaled version ofh is given by

Hα(PS
G
sl) = Hα(PS

G
s )− log2 l . (11)
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The sparsity measure we are using looks for the window which
minimizes the entropy measure: we deduce from (11) that it isthe
one obtained with the largest scaling factor available, so with the
largest time-support. This is coherent with our expectation as sta-
tionary signals, such as sinusoids, are best analyzed with ahigh
frequency resolution, because time-independency allows asmall
time resolution. Moreover, this is true for any orderα used for the
entropy calculus.
Symmetric considerations apply whenever the spectrogram of a
signal does not depend on frequency, as for impulses.

A last remark regards the dependency of (8) on the time and
frequency stepa andb used for the discretization of the spectro-
gram. When considering signals as finite vectors, a signal and its
Fourier Transform have the same length. Therefore in the STFT
the window length determines the number frequency points, while
the sampling rate sets frequency values: the definition ofb is thus
implicit in the window choice. Actually, the FFT algorithm allows
to ask a number of frequency points larger than the signal length:
further frequency values are obtained as an interpolation between
the original ones by properly adding zero values to the signal. If
the sampling rate is fix, such a procedure establishes smaller b as
a consequence of a larger number of frequency points. We have
numerically verified that such a variation ofb has no impact on
the entropy calculus, so that the FFT size can be set according to
implementation needs.
Regarding the time stepa, we are working on the analytical demon-
stration of a largely verified evidence: as long as the decomposing
system is a frame the entropy measure is invariant to redundancy
variation, so the choice ofa can be ruled by considerations on the
invertibility of the decomposing frame without losing coherence
between the information measure of the different analyses.This is
a key point, as it states that the sparsity measure obtained allows a
total independence between the hop sizes of the different analyses:
with the implementation of proper structures to handle multi-hop
STFTs we have obtained a more efficient algorithm in comparison
with the ones imposing a fixed hop size, as [7].

3. ALGORITHM AND EXAMPLES

We now summarize the main operations of the algorithm we have
developed providing examples of its application. For spectrograms
calculation we have used aHanning window

h(t) = cos2(πt)χ[−1

2
, 1
2
] , (12)

with χ the indicator function of the specified interval, but it is ob-
viously possible to generalize the results thus obtained tothe entire
class of compactly supported window functions. We create a mul-
tiple Gabor frame as in (4) using as mother functions some scaled
version ofh, obtained as in (2) with a finite set of positive real
scaling factorsL.
Different spectrograms of segments of the signal are calculated
with each one of the above frames: the length of the analysis seg-
ment and the overlap between two consecutive segments are given
as parameters.

The different frames composing the multi-frame have the same
frequency stepb but different time steps{al : l ∈ L}: the small-
est and largest window sizes are given as parameters together with
|L|, the number of different windows composing the multi-frame,

and the global overlap needed for the analyses. The algorithm fixes
the intermediate sizes so that for each signal segment the different
frames have the same overlap between consecutive windows, and
so the same redundancy. This generates an irregular time disposi-
tion of the multi-frame elements in each signal segment, as illus-
trated in figure 1. Such a disposition causes a different influence of
the boundary parts of the signal on the different frames analyses:
the beginning and the end of the signal segment have a higher en-
ergy when windowed in the smaller frames. This is avoided with
a preliminary weighting: the beginning and the end of each sig-
nal segment are windowed respectively with the first and second
half of the largest analysis window. Such a weighting does not
concern the decomposition for re-synthesis purpose, but only the
analyses used for entropy evaluations. For each signal segment we
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Figure 1: An analysis segment: time locations of the Heisenberg
boxes associated to the multi-frame used in our algorithm.

calculate the entropy of every spectrogram as in (8), whereG is
the rectangle with the time segment analyzed as horizontal dimen-
sion and the whole frequency lattice as vertical. The sparsest local
analysis is defined to be the one with minimum Rényi entropy: the
best window is thus defined consequently. Adaptation is obtained
over the time dimension as for every signal segment the selected
analysis involve the whole frequency dimension. An interpolation
is performed over the overlapping zones to avoid abrupt disconti-
nuities in the tradeoff of the resolutions.
The time adapted analysis of the global signal is finally realized
by opportunely assembling the slices of local sparsest analyses ob-
tained with the selected windows.

In figure 3 we give a first example of an adaptive analysis per-
formed by our algorithm with eight Hanning windows of different
sizes on a real instrumental sound, a B4 note played by a marimba:
this sound combines the need for a good time resolution at themo-
ment of the percussion, with that of a good frequency resolution
on the harmonic resonance of the instrument. This is fully pro-
vided by the algorithm, as shown in the adapted spectrogram at
the bottom of figure 3. Moreover, we see that the pre-echo of the
analysis at the bottom of figure 2 is completely removed in the
adapted spectrogram.

In figure 5 we give a second example with a synthetic sound, a
sinusoid with sinusoidal frequency modulation: as figure 4 shows,
a small window is best adapted where the frequency variationis
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Figure 2: Two different spectrograms of a B4 note played by a marimba, with Hanning windows of sizes 512 (top) and 4096 (bottom)
samples.

fast compared to the window length; on the other hand, the largest
window is better where the signal is almost stationary.

The re-synthesis method introduced in [8] gives a perfect re-
construction of the signal as a weighted expansion of the coeffi-
cients of its STFT in the original analysis frame. LetSf [n, k] be
the STFT of a signalf with window functionh and time stepa;
fixing n, through an iFFT we have a windowed segment off

fh(n, l) = h(na− l)f(l) , (13)

whose time location depends onn. An immediate perfect recon-
struction off is given by

f(l) =

∑+∞

n=−∞
h(na − l)fh(n, l)

∑+∞

n=−∞
h2(na− l)

. (14)

We extend the same technique using a variable windowh and time
stepa according to the composition of the reduced multi-frame,
obtaining a perfect reconstruction as well. The interest of(14) is
that the given distribution needs not to be the STFT of a signal: for
example, a transformationS∗[n, k] of the STFT of a signal could
be considered. In this case, (14) gives the signal whose STFThas
minimal least squares error withS∗[n, k].
The theoretical existence and the mathematical definition of the
canonical dual frame for reduced multi-frames like the one we
employ has recently been provided in [12]: the analysis and re-
synthesis framework is thus entirely defined within the Gabor the-
ory, but no automatic adaptation is employed. We are at present
working on the interesting analogies between the two approaches,
to establish a unified interpretation and develop further extensions.

4. CONCLUSIONS

We have presented an algorithm for time-adaptation of the spectro-
gram resolution, which can be easily integrated in existentframe-
work for analysis, transformation and re-synthesis of an audio sig-
nal: the adaptation is locally obtained through an entropy mini-
mization within a finite set of resolutions, which can be defined by
the user or left as default. The user can also specify the timedura-
tion and overlap of the analysis segments where entropy minimiza-
tion is performed, to privilege more or less discontinuous adapted
analyses.
Future improvements of this method will concern the spectrogram
adaptation in both time and frequency dimensions: this willpro-
vide a decomposition of the signal in several layers of analysis
frames, thus requiring an extension of the proposed technique for
re-synthesis.
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Figure 3: Example of an adaptive analysis performed by our algorithm with eight Hanning windows of different sizes from 512 to 4096
samples, on a B4 note played by a marimba sampled at 44.1kHz: on top, the best window chosen as a function of time; at the bottom, the
adaptive spectrogram. The entropy order isα = 0.7 and each analysis segment contains four frames of the largest window analysis with a
two-frames overlap between consequent segments.
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Figure 4: Two different spectrograms of a sinusoid with sinusoidal frequency modulation, with Hanning windows of sizes 512 (top)and
4096 (bottom) samples.

Figure 5: Example of an adaptive analysis performed by our algorithm with eight Hanning windows of different sizes from 512 to 4096
samples, on a sinusoid with sinusoidal frequency modulation synthesized at 44.1 kHz: on top, the best window chosen as a function of
time; at the bottom, the adaptive spectrogram. The entropy order isα = 0.7 and each analysis segment contains four frames of the largest
window analysis with a three-frames overlap between consequent segments.
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