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ABSTRACT

Above a certain amplitude, membrane vibration becomes
nonlinear due to the variation of surface tension. This leads
to audible pitch glides, which greatly contribute to the char-
acteristic timbre of tom-tom drums of the classical drum set
and many other percussion instruments. Therefore, there
is a strong motivation to take the tension modulation effect
into account in drum synthesis. Some models do already
exist that model this phenomenon, however, their computa-
tional complexity is significantly higher compared to linear
membrane models. This paper applies an efficient method-
ology previously developed for the string to model the qua-
sistatic part (short-time average) of the surface tension.The
efficient modeling is based on the linear relationship be-
tween the quasistatic tension and membrane energy, since
the energy can be computed at a relatively low computa-
tional cost. When this energy-based tension modulation is
added to linear membrane models, the perceptually most
relevant pitch glides are accurately synthesized, while the
increase in computational complexity is negligible.

1. INTRODUCTION

While the most relevant features of membrane oscillation
can be conveniently described by the 2-D linear wave equa-
tion, some important secondary effects can only be accounted
for by introducing nonlinear terms in the equation. Specifi-
cally, above a certain amplitude of vibration, the assumption
of constant membrane area does not hold, and the tension
varies in dependence of the instantaneous displacement. Be-
cause this nonlinearity comes from the geometry of the prob-
lem (the elasticity of the membrane material is assumed to
be linear), it is called “geometric nonlinearity”.

For strings, the effects of the geometric nonlinearity can
be classified into different regimes, depending on string pa-
rameters and on the excitation force [1]. One important spe-
cial case is tension modulation, where the tension varies
in time but it is spatially uniform along the string. The
most important perceptual effect of tension modulation is
the pitch glide, meaning that the pitch of the string decreases
as the sound decays. Relevant cases where this effect can be
audible include electric and steel-stringed acoustic guitars,
and various ethnic instruments.

The effects of the geometric nonlinearity for the case of
the membrane are somewhat less studied, and there appears
to be no proposed classification of the oscillation into dif-
ferent regimes. However, it is known that the pitch glides
coming from tension modulation have an even more signif-
icant perceptual effect in membranes than in strings. As
an example, tom-toms in a drum set exhibit a characteristic
glide at medium-high dynamic ranges, but many other per-
cussion instruments produce this effect. Therefore, there
is a strong motivation to simulate tension modulation in
physics-based membrane synthesis.

Membrane models proposed in previous works are mainly
based on 2-D or 3-D digital waveguide meshes (DWM [2]),
which can provide accurate simulation of wave propaga-
tion, depending on the mesh topology [3], and with addi-
tional processing to compensate for dispersion [4]. Finite-
difference schemes have also been used [5] (see [6] for an
analysis of various schemes). Models based on modal syn-
thesis [7] also exist. Cook [8] proposed a series of “physically-
informed” approaches to the modeling of percussion sounds,
including modal synthesis. Rabenstein and coworkers have
applied the functional transformation method to the simula-
tion of rectangular and circular linear membranes [9].

Models for tension modulation in strings have been dis-
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cussed for waveguide [10] and modal [11, 12] approaches.
An extension to the 2-D case of rectangular membranes
has been proposed in [13] in the context of modal synthe-
sis. More recently, a tension-modulated circular membrane
model was proposed in [14, 15], based on the theory of vi-
brations of elastic plates [16]. A finite-difference tension-
modulated membrane model has been proposed in [17].

Even for the simplest models of tension modulation in
strings and membranes, the computational complexity is sig-
nificantly higher compared to efficient linear models. As an
example, the model proposed in [14] requires the nonlinear
tension component to be computed at sample rate from a
weighted sum of the squared modal displacements (in the
order of several hundreds, or thousands). In [18], a new ten-
sion modulation methodology was proposed for the case of
the string. The method amounts to approximating the qua-
sistatic part (i.e., the short-time average) of the string ten-
sion from the energy of the string. It has been shown in [18]
that the method leads to significant computational savings,
while it is still able to simulate the perceptually most rele-
vant effect of tension modulation.

The purpose of this paper is to demonstrate that the ap-
proach presented in [18] can be extended to the case of the
circular membrane. To this end, the same line of reasoning
developed for the string is applied here to the membrane. In
particular, it is shown that the quasistatic nonlinear tension
can be estimated from the total energy of the membrane.

The remainder of the paper is organized as follows. Sec-
tion 2 summarizes the tension-modulation model presented
in [14] and introduces the concept of quasistatic tension in
the circular membrane. Section 3 defines kinetic and po-
tential energies of a circular membrane, and relates the total
membrane energy to the tension. Section 4 demonstrates
how the proposed approach can be exploited to obtain effi-
cient simulations of tension-modulated circular membranes,
in the framework of modal synthesis. Finally, Sec. 5 con-
cludes the paper and gives future research directions.

2. TENSION MODULATION IN CIRCULAR
MEMBRANES

2.1. General formulation

The model described here is derived in the assumption of
homogeneous and isotropic membrane material, and of uni-
form clamping (see [14, 15] for more details). The mem-
brane vertical displacementz(r, ϕ, t), driven by a force den-
sity f (ext)(r, ϕ, t), is governed by the following equation:

D∇4z + σ
∂2z

∂t2
− [T0 + TNL(z)]∇2z+

+ d1

∂z

∂t
+ d3

∂∇2z

∂t
= f (ext), (1)

Table 1:Physical and geometrical membrane parameters.
Symbol Unit Meaning

σ Kg/m2 Surface density
T0 N/m Surface tension
d1 Kg/sm2 Freq. independent dissipation coefficient
d3 Kg/sm Freq. dependent dissipation coefficient
E N/m2 Young modulus
υ — Poisson ratio
R m Radius
h m Thickness

where we have omitted spatial and temporal dependencies
for simplicity. The units and meanings of all physical pa-
rameters in Eq. (1) are listed in Table 1. The coefficient
D = Eh3/12(1 − υ2) is the (small) bending stiffness of
the membrane. The functionTNL(z) can be interpreted as
the surface tension generated in dependence of the displace-
mentz, in addition to the tension at restT0. Ideal boundary
conditions for a uniformly-clamped membrane are given by
zero deflection and skewness at the boundary.

A model for the termTNL(z) is derived from the theory
of elastic plates. Specifically, it is based on the so-called
Berger approximation of the von Karman equations for thin
plates subjected to lateral and in-plane forces [16]:

TNL(z) =
Eh

2πR2(1 − υ2)
·

∫ R

0

∫ 2π

0

[

(

∂z

∂r

)2

+
1

r2

(

∂z

∂ϕ

)2
]

rdϕdr. (2)

The double integral in Eq. (2) computes the difference be-
tween the membrane areaA(z) corresponding to the dis-
placementz, and the area at restA0 = πR2. Accordingly,
the nonlinear functionTNL(z) can be interpreted as a spa-
tially uniform tension modulation term, which depends only
on the total areaA(z), in analogy with the Kirchhoff-Carrier
equation for tension-modulated strings [19].

2.2. Modal formulation

The general solutionz can be expressed in terms of its nor-
mal modes̄z(t)K(r, ϕ) in which temporal and spatial de-
pendencies are decoupled. With the boundary conditions
considered here, the equation is known [20] to have a nu-
merable set of modes with spatial eigenfunctions:

Kn,m(r, ϕ) = cos[n(ϕ − ϕ0)]Jn

(

µn,m
r

R

)

, (3)

wheren ≥ 0, m ≥ 1, andµn,m is them-th zero of then-th
order Bessel function of the first kind,Jn.

The PDE in (1) can then be turned into a set of ordi-
nary differential equations that describe the dynamics of the
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normal modes. More precisely, the mode(n,m), character-
ized by the modal amplitudēzn,m, is a forced second-order
oscillator whose parameters are determined by those of the
original PDE. The displacementz and the normal modes are
related through the following equations:

z̄n,m(t) =

∫

r

∫

ϕ

z(r, ϕ, t)Kn,m(r, ϕ) rdrdϕ. (4a)

z(r, ϕ, t) =
+∞
∑

n=0

+∞
∑

m=1

z̄n,m(t)Kn,m(r, ϕ)

‖Kn,m(r, ϕ) ‖
2

2

, (4b)

where Eq. (4a) expresses the displacement as a weighted
sum of its modal amplitudes. It was shown in [14] thatT̄NL

can also be written in terms of the modal amplitudesz̄:

T̄NL(z̄) =
Eh

2πR4(1 − υ2)
·
∑

n,m

µ2
n,mz̄2

n,m

‖Kn,m ‖
2

2

. (5)

By means of this nonlinear equation the model (1) can be
integrated into a modal synthesis engine.

2.3. Quasistatic tension modulation

In this section we show that the nonlinear tension term can
be split into a “quasistatic tension” component and a sec-
ond component containing “double-frequency terms”. The
derivation resembles closely that for the string [18].

After the excitation, the membrane modes decay expo-
nentially, thus the instantaneous amplitudesz̄n,m(t) become
exponentially decaying sinusoidal functions:

z̄n,m(t) = An,m sin(ωn,mt + φn,m)e−t/τn,m , (6)

where amplitudesAn,m and phasesφn,m depend on the ini-
tial conditions, while resonance frequenciesωn,m and decay
timesτn,m are determined as follows, from [14]:

ω2
n,m =

(µn,m

R

)2
[

D

σ

(µn,m

R

)2

+ c2

]

, (7a)

τ−1
n,m =

1

2σ

[

d1 + d3

(µn,m

R

)2
]

, (7b)

andc =
√

T0/σ is the wave velocity in the membrane.
Substituting this expression into the nonlinear tension

term (5) yields

TNL(t) =
Eh

4πR4(1 − υ2)

∑

n,m

µ2
n,mA2

n,m

‖Kn,m ‖
2

2

·

[1 − cos(2ωn,mt + 2φn,m)] e−2t/τn,m . (8)

The first time-dependent part of Eq. (8) is a quasistatic in-
crease of tension:

Tqs(t) =
Eh

4πR4(1 − υ2)

∑

n,m

µ2
n,mA2

n,m

‖Kn,m ‖
2

2

· e−2t/τn,m , (9)
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Figure 1: Simulated membrane excited at the center with
impact velocity of5 m/s; (a) membrane displacement (solid
line) and hammer displacement (dashed line) at the impact
position; (b) nonlinear tensionTNL (solid line) versus qua-
sistatic componentTqs (dashed line).

which decays slowly. This leads to a proportional shift (con-
tinuous decrease) in the modal frequencies, resulting in a
pitch glide which is the most relevant perceptual effect of
tension modulation.

As an example, the vibration of a simulated circular
membrane is displayed in Fig. 1. The example is computed
using modal synthesis, and the membrane is excited by a
nonlinear impact force model (see [14] and Sec. 4 below).
In this example the membrane has been struck near the cen-
ter (at a pointrh = 0.1R) with a moderate impact velocity
(5 m/s), and the tension at rest is800 N/m.

Being proportional to the total membrane area, the non-
linear tensionTNL(t) (the solid line in Fig. 1(b)) oscillates
around the quasistatic tensionTqs. Here the quasistatic ten-
sion (dashed line in Fig. 1(b)) is estimated by applying a
lowpass filter to the tensionTNL. The slow initial rise of
the quasistatic tensionTqs is the time-domain side effect of
lowpass filtering.
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3. RELATION TO ENERGY

Since the most prominent effect of tension modulation in the
membrane is the pitch glide due to the quasistatic tension
variationTqs, it is reasonable to concentrate on the mod-
eling of the quasistatic part. In this section, we derive a
simple relationship betweenTqs and the membrane energy.
As will be shown later, the energy of the membrane can be
estimated at lower computational complexity, thus allowing
to compute the quasistatic tension with less operations com-
pared to earlier models.

3.1. Membrane kinetic and potential energies

The kinetic energyEk and the potential energyEp of the
membrane can be derived by applying the same line of rea-
soning used in [21, Ch.3-5] for the string and the rectangular
membrane.

The kinetic energy associated with an infinitesimal ele-
mentdA = rdrdϕ of the membrane area isdEk(r, ϕ, t) =
1

2
σdAż2(r, ϕ, t). Therefore, the total kinetic energy is

Ek(t) =
1

2
σ

∫

r

∫

ϕ

[

∂z(r, ϕ, t)

∂t

]2

rdrdϕ. (10)

The potential energyEp can be derived as follows. Suppose
that the membrane is displaced from equilibrium to its final
displacementz through the intermediate displacementskz
(with k ∈ [0, 1]). The potential energy equals the work done
along this path. Throughout the path, the forces acting on a
membrane area elementdA = rdrdϕ are

Fr(r, ϕ, t, k) =
T0

r

∂

∂r

[

r
∂kz(r, ϕ, t)

∂r

]

rdrdϕ,

Fϕ(r, ϕ, t, k) =
T0

r2

∂2kz(r, ϕ, t)

∂ϕ2
rdrdϕ,

(11)

along the radial and angular direction, respectively. There-
fore, the net force acting on the area element is

F (r, ϕ, t, k) = T0∇
2kz(r, ϕ, t)rdrdϕ. (12)

The associated potential energydEp equals (with the oppo-
site sign) the work done by this force along the path from
equilibrium toy. For each increasedk the corresponding
change in displacement iszdk, therefore:

dEp(r, ϕ, t) = −

∫ 1

0

[

T0∇
2kz(r, ϕ, t)rdrdϕ

]

z(r, ϕ, t)dk

= −
T0

2
∇2z(r, ϕ, t)z(r, ϕ, t)rdrdϕ. (13)

Therefore, the total potential energy is

Ep(t) = −
T0

2

∫

r

∫

ϕ

∇2z(r, ϕ, t)z(r, ϕ, t)rdrdϕ. (14)

We have implicitly assumedEp = 0 at equilibrium. Note
also that Eq. (14) represents in fact the potential energy in
the linear regime, as the forcesFr and Fϕ acting on the
area elementdA have been estimated by only considering
T0 and discardingTNL. Finally, Eq. (14) does not consider
bending forces, which are assumed to be negligible (i.e.D
is assumed to be small).

The sum of the kinetic and potential energyE = Ek +
Ep is the total energy of the membrane, and the membrane
at rest leads toE = 0.

3.2. Quasistatic tension and total energy

We now show that the quasistatic tensionTqs is a scaled
version of the total membrane energyE, through Eq. (20).

In order to prove this result, first the energy has to be
written in terms of the normal modes. RegardingEk, sub-
stitution of Eq. (4b) into (10) yields

Ek(t) =
σ

2

∑

n,m

ż2
n,m(t)

‖Kn,m ‖
4

2

∫

r

∫

ϕ

K2
n,m(r, ϕ)rdrdϕ =

=
σ

2

∑

n,m

ż2
n,m(t)

‖Kn,m ‖
2

2

. (15)

Moreover, substitution of Eq. (6) into (15) yields1

Ek(t)=
σ

4

∑

n,m

A2
n,mω2

n,m

‖Kn,m ‖
2

2

[1+cos(2ωn,mt+2φn,m)]e−2t/τn,m.

(16)
The potential energyEp can be written in terms of the

normal modes by substituting Eq. (4b) into (14). Recalling
the the modal shapesKn,m are eigenfunctions of the Lapla-
cian operator with associated eigenvalues− (µnm/R)

2, and
that they are orthogonal, one finds

Ep(t)=−
T0

2

∫

r

∫

ϕ

[

∑

n,m

−
µ2

n,m

R2

z2
n,m(t)

‖Kn,m ‖
4

2

K2
n,m(r, ϕ)

]

rdrdϕ

=
T0

2R2

∑

n,m

µ2
n,m

‖Kn,m ‖
2

2

z2
n,m(t). (17)

Moreover, substitution of Eq. (6) into (17) yields

Ep(t)=
T0

4R2

∑

n,m

µ2
n,mA2

n,m

‖Kn,m ‖
2

2

[1−cos(2ωn,mt+2φn,m)]e−2t/τn,m.

(18)

Finally, recalling the identityω2
n,m =

µ2

n,m
T0

R2σ (from Eq. (7a)
in the hypothesis of negligible bending stiffness,D ∼ 0),

1Here the derivativeṡz2
n,m

(t) are approximated in the assumption
that the decay timesτn,m are long compared to the oscillation periods
2π/ωn,m. This assumption is usually taken when deriving the kinetic en-
ergy of a second-order damped oscillator [21, Ch.2].
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the total energy can be written as

E(t) = Ek(t) + Ep(t) =
T0

2R2

∑

n,m

µ2
n,mA2

n,m

‖Kn,m ‖
2

2

e−2t/τn,m .

(19)
Comparison of this equation with Eq. (9) proves that

Tqs(t) =
Eh

2πR2(1 − υ2)T0

E(t), (20)

which is the fundamental outcome of this section.

4. SIMULATIONS

In this section the equations presented above are validated
through simulations of a discrete-time realization of the non-
linear membrane model, and an efficient implementation is
presented. The model utilizes a modal synthesis approach in
which the membrane is modeled by a bank of second-order
resonators, each representing the displacement of one mode
of oscillation. Tension modulation is estimated from modal
displacements according to Eq. (5). The membrane is hit by
a “hammer” (a drumstick or a mallet) which is modeled as
lumped massmh. The impact forceFh between the ham-
mer and the membrane is, from [22]:

Fh(ζ(t), ζ̇(t)) =

{

kζ(t)α + λζ(t)αζ̇(t), ζ > 0,

0, otherwise,
(21)

whereζ(t) = z(rh, ϕh, t) − zh(t) represents the hammer
compression, i.e. the difference between the hammer dis-
placementzh and the displacement of the membranez at
the point of contact(rh, ϕh). Similar nonlinear nearly elas-
tic models have been used to describe the interaction of a
hammer with piano strings [23], as well as that of a drum-
stick or mallet and a membrane [24].

4.1. Computation of quasistatic tension from energy

The energy of the same membrane as of Fig. 1 is displayed
in Fig. 2(a). The kinetic and potential energies oscillate in
antiphase, and as a result the total energy is a slowly decay-
ing signal. Note that the total energy computed from the
simulation is not exactly a monotonically decreasing sig-
nal, and instead exhibits small oscillations. This is to be
attributed to the fact that the potential energyEp in Eq. (14)
has been derived in the linear regime, discarding the effects
of tension modulation.

Figure 2(b) shows a comparison of quasistatic tension
computed from membrane energy according to Eq. (20),
and quasistatic tension computed by lowpass filteringTNL.
The energy-based quasistatic tension (solid line) shows the
correct behavior (apart from the presence of small ripples
already discussed above).
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Figure 2:Simulated struck membrane; (a) total (solid thick
line), kinetic, and potential (solid thin lines) energies;(b)
quasistatic tensionTqs computed from membrane energy
(solid line) and estimated fromTNL (dashed line).

These results show that the quasistatic tension can be
accurately computed from the membrane energy. In the
model discussed in [14, 15], tension computation is a sep-
arate model block which acts as an input to the linear fil-
ters representing membrane modes. This block can thus be
substituted by an energy computation block and a simple
scaling.

4.2. Efficient modal synthesis

Substituting the tension modulation block with a scaled en-
ergy computation block, as suggested above, will not yet
lead to computational savings because computing the mem-
brane energy from the modal displacements (from Eqs. (10)
and (14)) takes a similar number of operations as comput-
ing the tension. However, the computational complexity of
the energy computation can be decreased significantly, as
shown in this section.

As can be seen in Fig. 2, the energy and the quasistatic
tension are slowly changing signals, in contrast to the total
tension variation (see Fig. 1(b), solid line). Therefore, the
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membrane energy can be computed at a lower rate, and the
continuous energy curve can be obtained by linearly inter-
polating between the computed points. As a result, the av-
erage load of energy computation becomes negligible com-
pared to the sample-rate computation of the modal displace-
ments.

Figure 3 shows three spectrograms obtained by hitting
the membrane model at a pointrh = 0.5R with impact ve-
locity 20 m/s, which is close to the highest dynamic levels
in drum playing [25]. In Fig. 3(a) the complete tension-
modulation modelTNL of Eq. (5) has been used; the spec-
trogram in Fig. 3(b) instead has been obtained by approxi-
matingTNL with Tqs, estimated from the membrane energy
according to Eq. (20); finally Fig. 3(c) shows the results ob-
tained when the computation ofTqs is downsampled by a
factor32 (i.e. Tqs is computed every32/44.1 ∼ 0.73 ms).

Although some differences can be noticed between the
spectrograms, the overall behavior is similar. The same re-
marks applies to the corresponding sounds: they are per-
ceptually similar, although some differences are heard. The
sounds are available on a dedicated webpage2 for the inter-
ested reader.

5. CONCLUSION AND FUTURE WORK

This paper has presented an efficient methodology for the
modeling of tension modulation effects in circular mem-
branes, based on the linear relationship between the energy
of the membrane and the quasistatic part (short-time aver-
age) of the tension variation. In summary, the computation-
ally heavy tension computation block in earlier membrane
models is substituted with a more efficient energy computa-
tion block and a simple scaling.

As a result, the simplified model is able to synthesize
the frequency glides occurring in tension modulated mem-
branes, with little additional computational complexity com-
pared to a linear model, in contrast to earlier tension modu-
lated membrane models.

We expect the approach proposed in this paper to be
generalizable to other simple geometries (e.g. rectangu-
lar membranes). Moreover, it should be possible to further
simplify the computations by applying the “energy storage
model” [18] originally developed for the string. Finally,
future research includes thorough comparison between the
proposed simplified model and earlier models, in terms of
sound quality and computational complexity.
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Figure 3:Spectrograms of synthetic membrane sounds; (a)
complete model using nonlinear tensionTNL of Eq. (5); (b)
approximated model using quasistatic tensionTqs estimated
from energy according to Eq. (20); (c) efficient model com-
putingTqs with a downsampling factor of32.
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