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ABSTRACT

A new method for the identification of nonlinear systems, based
on an input exponential swept sine signal has been proposed by
Farina ten years ago. This method has been recently modified in
purpose of nonlinear model estimation using a synchronized swept
sine signal. It allows a robust and fast one-path analysis and iden-
tification of the unknown nonlinear system under test.

In this paper this modified method is applied with Chebyshev
polynomial decomposition. The combination of the Synchronized
Swept Sine Method and Chebyshev polynomials leads to a non-
linear model consisting of several parallel branches, each branch
containing a nonlinear Chebyshev polynomial following by a lin-
ear filter. The method is tested on an overdrive effect pedal to
simulate an analog nonlinear effect in digital domain.

1. INTRODUCTION

Various classical analog audio effects such as compression, har-
monic excitation, overdrive or distortion for guitars fall into the
category of nonlinear effects. Digital emulations of such effects
can be obtained when using suitable nonlinear model. Such non-
linear models are available in the literature: for example, Volterra
model [1], neural network model [2], MISO model [3], NARMAX
model [4], hybrid genetic algorithm [5], extended Kalman filtering
[6], particle filtering [7].

All these models involve parameters or kernels that have to be
estimated. If a theoretical model of the nonlinear system (NLS)
under test is available, the global nonlinear behavior of the system
is known and the method to be carried out consists in the estima-
tion of the unknown parameters of the NLS. If no prior knowl-
edge of the NLS is available, an identification procedure has to
be involved. This procedure is based on the analysis of the sig-
nal produced at the output of the system under test when exciting
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the system by a given and controlled input signal. Different in-
put signals can be used, depending on the method chosen for the
estimation, such as sine wave excitation, multitone excitation [8],
random noise excitation [3], pseudorandom signals [9].

A new method for identification of nonlinear systems, based
on the nonlinear convolution method, has been presented by Farina
[10, 11]. This method uses an exponential swept sine excitation as
input signal. The output signal is convolved with so called in-
verse filter (time-reversed replica of the excitation signal with am-
plitude modulation). That allows to analyze the nonlinear system
in terms of higher order frequency responses that are equivalent to
frequency responses of higher harmonics.

This nonlinear convolution method exhibits very good robust-
ness and accuracy in nonlinear systems analysis, but does not allow
the whole identification of a nonlinear system, nor the estimation
of a nonlinear model due to the non-synchronization of the excita-
tion signal.

The method has then been modified [12] through the synchro-
nization of the excitation swept sine signal (Fig. 1). The math-
ematical background of the method is described in detail in [12]
and briefly recalled in section 2. We call this modified method the
Synchronized Swept-Sine Method.

The Synchronized Swept-Sine Method method has been al-
ready used to identify nonlinear systems under test and to esti-
mate their nonlinear models either by polynomial series [12] that
makes the model identic with a generalized Hammerstein model,
or by any arbitrary nonlinear series [13]. In both cases, the non-
linear model is made up of several parallel branches, each branch
containing a nonlinear function followed by a linear filter. These
linear filters has been derived using a linear transformation from
the higher order frequency responses (the result of the nonlinear
convolution method).

In this paper, we present a different point of view on the non-
linear model. Instead of being transformed, the higher order fre-
quency responses are used directly in the nonlinear model in which
the input signal i transformed using the Chebyshev polynomials of
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Figure 1: Synchronized swept-sine signalxc(t) in time domain
(below), and its associated instantaneous frequencyfi(t) (above).

first kind.
The paper is organized as follows. The Synchronized Swept

Sine Method method is briefly described in Section 2. In Section
3, a new approach in modeling nonlinear systems using Cheby-
shev polynomials in combination with results of the Synchronized
Swept Sine Method is described. In Section 4, a real audio ef-
fect (overdrive effect pedal) is studied to show the efficiency of the
method.

2. ANALYSIS OF NONLINEAR SYSTEMS

The input signal used for identification is an exponential swept
sine signal, also called exponential chirp, defined as
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f1 andf2 being start and stop frequencies andT̂ the time duration
of the swept-sine signal and Round represents rounding towards
nearest integer. The rounding operating allows the synchronization
of the excitation signal, depicted in Fig.1. This excitation signal
is a strictly monotonic swept sine signal, also called asymptotic
signal [14, 15], whose instantaneous frequencyfi(t) and the group
delaytf (t) may be regarded as inverse of each other

fi(t) = f1 exp

�
tf

L

�
, (3)

wheretf (t) ≡ tf ≡ t [15, 12].
The identification of a nonlinear system consists of following

steps. First, the responsey(t) of the nonlinear system under test
to the excitation signal is acquired. Next, the nonlinear impulse
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Figure 2:Nonlinear impulse response consisting of several sepa-
rated impulse responseshn(t).

response is derived. This nonlinear impulse response is defined as

h(t) = IFT

�
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, (4)

whereXc(f) is the Fourier Transform (FT) of the excitation signal
xc(t), written using the the property of asymptotic signal [16] as
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Y (f) is the FT of output signaly(t) and where IFT is the inverse
Fourier Transform. The nonlinear impulse response consists of
several separated impulse responseshn(t) (Fig. 2). The FTHn(f)
of each responsehn(t),

Hn(f) = FT {hn(t)} , (6)

represents the higher order frequency response, equivalent to the
frequency response of then−th higher harmonic. These responses
Hn(f) are directly used in the Chebyshev nonlinear model de-
scribed in the next section.

3. CHEBYSHEV NONLINEAR MODEL

In this section, we introduce the nonlinear model based on Cheby-
shev polynomials. We use the expressionChebyshev polynomial
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Figure 3: Nonlinear model with Chebyshev polynomialsTn(x)
and higher order frequency responses (linear filters)Hn(f), n ∈
[1, N ].
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Figure 4:Schema of the modeled nonlinear analog device (overdrive effect pedal).

referring exclusively to the Chebyshev polynomialTn(x) of the
first kind defined as [17]

Tn(x) = cos(nθ), wherex = cos(θ), (7)

and forming a sequence of orthogonal polynomials defined by the
recurrence relation

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, . . . , (8)

with the initial conditions

T1(x) = 1, T2(x) = x. (9)

Thanks to the property defined in Eq. (7), the Chebyshev poly-
nomialsTn(x) represent a generator producing puren−th higher
harmonics when excited with a signalcos(ωt). When excited with
the synchronized swept sine signalxc(t) defined in Eq. (1), the
Chebyshev polynomialTn(xc(t)) generates the copy of the excita-
tion signalxc(t) with the instantaneous frequencyn-times higher
than the original one.

Fig. 3 illustrates the schema of the nonlinear model used for
identification of nonlinear systems. This model uses the higher
order frequency responsesHn(f) obtained as linear filters and
Chebyshev polynomialsTn(x) as zero memory nonlinear systems.
This model exhibits structure similar to the generalized Hammer-
stein model, with Taylor serie replaced by the Chebyshev one. The
parallel branches are preceded by a linear band-pass filter corre-
sponding to the band in which the identification has to be made.

x(t)

�� ������
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 ����

��
��	� �

yr(t)

ym(t)

Figure 5:Block diagram of the nonlinear model validation.
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Figure 6:Comparison between (a) the real overdrive effect pedal
output and (b) the model output, for sine wave excitation withf0 =
500 Hz andA0 = 1 V.

4. NONLINEAR AUDIO EFFECT MODELING

To test this nonlinear identification method, we choose a nonlin-
ear analog device (overdrive effect pedal), the electronic schema
of which is depicted in Fig. 4. The setting parameters of the over-
drive pedal have been chosen to create a soft nonlinear effect cor-
responding to the real condition in which the pedal is used.

The experimental measurement consists of two steps: (a) analy-
sis of the nonlinear system under test including the Chebyshev
model identification as described in previous section and (b) com-
parison of the output signals of the model and of the nonlinear
system under test when excited with the same signal, in order to
validate the estimated model.

For the first step, the measurement conditions are selected
as follows: The sampling frequency used for the experiment is
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Figure 7:Sample of a music signal from an acoustic guitar: com-
parison between real-output and model-output.

fs = 192 kHz. The excitation signalxc(t) is sweeping from
f1 = 1 Hz to f2 = 10 kHz with amplitudeA = 1 V. The Cheby-
shev nonlinear model of the system under test is then estimated
for a chosen orderN = 9 with respect to maximum frequency
Nf2 less then half the sampling frequency in order to avoid any
nonlinear aliasing.

The second step is the validation of the model. To validate its
accuracy the following test is performed. An input signalx(t) is
provided to the inputs of both real analog effect device and its esti-
mated model, and the responses are compared. The block diagram
is depicted in Fig.5. Firstly,x(t) is a sine-wave input signal with
frequencyf0 = 500 Hz and amplitudeA0 = 1 V. Secondly, the
input signal is a real music signal from an acoustic guitar. Both
regenerated and real-world system outputs are then compared in
time and frequency domain. We define also an error signal crite-
rion, the mean-squared error MSE (mean value of the squared dif-
ference between original outputyr(t) and the model outputym(t).

In Fig. 6, the responses to a harmonic signal (f0 = 500 Hz
andA0 = 1 V) of the real overdrive effect pedal (above) and of
the Chebyshev model (below) are compared. The mean squared
error between both isMSE = 4 · 10−5 V. The same test is pro-
vided for the real music signal from an acoustic guitar. Samples
of both signals are depicted in Fig. 7. The mean squared error be-
tween both isMSE = 2 · 10−4 V. Very good agreement has been
obtained for both reconstructed signals, the sine wave signal and
the real musical signal from an acoustic guitar.

5. CONCLUSIONS

In this paper a recently developed method for identification of non-
linear systems has been used with Chebyshev polynomials of first
kind to model a nonlinear audio effect an overdrive effect pedal.
The method for analysis and modeling nonlinear systems is based
on synchronized swept sine signal and allows to identify the non-
linear system in a one-path measurement. This method allows then
to model audio devices as a set of frequency responsesHi(f).
Works are now in progress to perceptually evaluate the weight and
the significance of each frequency response.
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