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ABSTRACT

A new method for the identification of nonlinear systems, based

on an input exponential swept sine signal has been proposed by
Farina ten years ago. This method has been recently modified in
purpose of nonlinear model estimation using a synchronized swept
sine signal. It allows a robust and fast one-path analysis and iden-

tification of the unknown nonlinear system under test.
In this paper this modified method is applied with Chebyshev
polynomial decomposition. The combination of the Synchronized

Swept Sine Method and Chebyshev polynomials leads to a non;]in terms of higher order frequency responses that are equivalent to

linear model consisting of several parallel branches, each branc
containing a nonlinear Chebyshev polynomial following by a lin-
ear filter. The method is tested on an overdrive effect pedal to
simulate an analog nonlinear effect in digital domain.

1. INTRODUCTION
Various classical analog audio effects such as compression, har
monic excitation, overdrive or distortion for guitars fall into the
category of nonlinear effects. Digital emulations of such effects
can be obtained when using suitable nonlinear model. Such non
linear models are available in the literature: for example, Volterra
model [1], neural network modél[[2], MISO modegl [3], NARMAX
model [4], hybrid genetic algorithm[5], extended Kalman filtering
[6], particle filtering [7].

All these models involve parameters or kernels that have to be
estimated. If a theoretical model of the nonlinear system (NLS)
under test is available, the global nonlinear behavior of the system

is known and the method to be carried out consists in the estima-

tion of the unknown parameters of the NLS. If no prior knowl-

edge of the NLS is available, an identification procedure has to
be involved. This procedure is based on the analysis of the sig-
nal produced at the output of the system under test when exciting
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the system by a given and controlled input signal. Different in-
put signals can be used, depending on the method chosen for the
estimation, such as sine wave excitation, multitone excitatibn [8],
random noise excitation[3], pseudorandom sigriéls [9].

A new method for identification of nonlinear systems, based
on the nonlinear convolution method, has been presented by Farina
[10,[11]. This method uses an exponential swept sine excitation as
input signal. The output signal is convolved with so called in-
verse filter (time-reversed replica of the excitation signal with am-
plitude modulation). That allows to analyze the nonlinear system

frequency responses of higher harmonics.

This nonlinear convolution method exhibits very good robust-
ness and accuracy in nonlinear systems analysis, but does not allow
the whole identification of a nonlinear system, nor the estimation
of a nonlinear model due to the non-synchronization of the excita-
tion signal.

The method has then been modified|[12] through the synchro-
hization of the excitation swept sine signal (Hig. 1). The math-
ematical background of the method is described in detall ih [12]
and briefly recalled in sectiqrj 2. We call this modified method the
Synchronized Swept-Sine Method

The Synchronized Swept-Sine Method method has been al-
ready used to identify nonlinear systems under test and to esti-
mate their nonlinear models either by polynomial sefie$ [12] that
makes the model identic with a generalized Hammerstein model,
or by any arbitrary nonlinear seriéss [13]. In both cases, the non-
linear model is made up of several parallel branches, each branch
containing a nonlinear function followed by a linear filter. These
linear filters has been derived using a linear transformation from
the higher order frequency responses (the result of the nonlinear
convolution method).

In this paper, we present a different point of view on the non-
linear model. Instead of being transformed, the higher order fre-
quency responses are used directly in the nonlinear model in which
the input signal i transformed using the Chebyshev polynomials of
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Figure 2:Nonlinear impulse response consisting of several sepa-
f rated impulse responsés, (t).

response is derived. This nonlinear impulse response is defined as
Figure 1: Synchronized swept-sine signal(¢) in time domain

(below), and its associated instantaneous frequefagy) (above). h(t) = | FT { )}(/((ff)) } 7 @)
first kind whereX.(f) is the Fourier Transform (FT) of the excitation signal

The paper is organized as follows. The Synchronized Swept z<(t), written using the the property of asymptotic sighal [16] as

Sine Method method is briefly described in Secfipn 2. In Section T f -
[3. a new approach in modeling nonlinear systems using Cheby- X.(f) = \/ = exp {j {27rL (f —fi—fIn —) + f} } ,
shev polynomials in combination with results of the Synchronized I h 4

Swept Sine Method is described. In Sec@n 4, a real audio ef- . . . .
fect (overdrive effect pedal) is studied to show the efficiency of the Y(f). is the FT of output sngneg_}(t) ar_1d where IFT is the Inverse
Fourier Transform. The nonlinear impulse response consists of

method. several separated impulse resporisgs) (Fig.[g). The FTH,,(f)
of each responsk, (t),

Hy(f) = FT {ha(8)} (6)

represents the higher order frequency response, equivalent to the
frequency response of the-th higher harmonic. These responses

2. ANALYSIS OF NONLINEAR SYSTEMS

The input signal used for identification is an exponential swept
sine signal, also called exponential chirp, defined as

¢ H,(f) are directly used in the Chebyshev nonlinear model de-
xc(t) = cos {QWL {BXP (f) - 1] } ; (1) scribed in the next section.
where 3. CHEBYSHEV NONLINEAR MODEL
I = iRound Tfl ) In this section, we introduce the nonlinear model based on Cheby-

shev polynomials. We use the expressfeimebyshev polynomial

f1 and > being start and stop frequencies afithe time duration

w1(t) [ yi(t)

of the swept-sine signal and Round represents rounding towards { Ti(2) }
nearest integer. The rounding operating allows the synchronization ,
of the excitation signal, depicted in F[E;.l. This excitation signal [ T(x) I
is a strictly monotonic swept sine signal, also called asymptotig,:b(t) - I I
signal [14[15], whose instantaneous frequefi¢y) and the group [ = ] ®
delayt(t) may be regarded as inverse of each other L ]
Fi0) = fresp (2 3) '
W= nexp ) {TW)}

wherets(t) =ty = t [15,[12]. . ) . )

The identification of a nonlinear system consists of following Figure 3: Nonlinear model with Chebyshev polynomidls(x)
steps. First, the respongét) of the nonlinear system under test and higher order frequency responses (linear filtefs)(f), n &
to the excitation signal is acquired. Next, the nonlinear impulse L, N].

DAFX-2



Proc. of the 1% Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

1uFB.P. 1k

100 ohm 10uF
s Output

Bk

10k

Figure 4:Schema of the modeled nonlinear analog device (overdrive effect pedal).

referring exclusively to the Chebyshev polynomial(z) of the 0s
first kind defined as [17]

voltage [V]
°

Tn(z) = cos(nf), wherex = cos(0), 7

and forming a sequence of orthogonal polynomials defined by the
recurrence relation e

@

To(z) =22Th—1(x) — Th—2(z), n=2,3,..., (8)

0.5

with the initial conditions

Ti(z) =1, Ta(z) =z )

voltage [V]
°

Thanks to the property defined in Ef] (7), the Chebyshev poly-

nomialsT, (x) represent a generator producing pureth higher -osf ]

harmonics when excited with a signaks(wt). When excited with e

the synchronized swept sine signal(t) defined in Eq.[(L), the (b)

Chebyshev polynomidl’, (z.(t)) generates the copy of the excita-

tion signalz.(t) with the instantaneous frequenaytimes higher Figure 6: Comparison between (a) the real overdrive effect pedal

than the original one. output and (b) the model output, for sine wave excitation yjtk-
Fig.[3 illustrates the schema of the nonlinear model used for 500 Hz andA4, = 1 V.

identification of nonlinear systems. This model uses the higher

order frequency responsés, (f) obtained as linear filters and

Chebyshev polynomials, (x) as zero memory nonlinear systems. 4. NONLINEAR AUDIO EEEECT MODELING

This model exhibits structure similar to the generalized Hammer- '

stein model, with Taylor serie replaced by the Chebyshev one. TheTo test this nonlinear identification method, we choose a nonlin-

parallel branches are preceded by a linear band-pass filter corre- . . .
sponding to the band in which the identification has to be made. ear analog device (overdrive effect pedal), the electronic schema
of which is depicted in Fig.]4. The setting parameters of the over-

drive pedal have been chosen to create a soft nonlinear effect cor-
responding to the real condition in which the pedal is used.

NL system y_(f), The experimental measurement consists of two steps: (a) analy-
under test sis of the nonlinear system under test including the Chebyshev
2(t) — model identification as described in previous section and (b) com-
Ym(®) parison of the output signals of the model and of the nonlinear
NL : ; ; ; ;
model — system under test when excited with the same signal, in order to
validate the estimated model.
. ) ) S For the first step, the measurement conditions are selected
Figure 5:Block diagram of the nonlinear model validation. as follows: The sampling frequency used for the experiment is
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Figure 7:Sample of a music signal from an acoustic guitar: com-

parison between real-output and model-output.

fs = 192 kHz. The excitation signak.(t) is sweeping from
fi = 1Hzto fa = 10 kHz with amplitudeA = 1 V. The Cheby-
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shev nonlinear model of the system under test is then estimated

for a chosen orde®V = 9 with respect to maximum frequency
N f5 less then half the sampling frequency in order to avoid any

nonlinear aliasing.

The second step is the validation of the model. To validate its

accuracy the following test is performed. An input signél) is

provided to the inputs of both real analog effect device and its esti-

(6]

[7]

mated model, and the responses are compared. The block diagram[8]

is depicted in Fi@]S. Firstlyz(t) is a sine-wave input signal with

frequencyfo, = 500 Hz and amplituded, = 1 V. Secondly, the

input signal is a real music signal from an acoustic guitar. Both

9]

regenerated and real-world system outputs are then compared in

time and frequency domain. We define also an error signal crite-
rion, the mean-squared error MSE (mean value of the squared dif'[lO]

ference between original output(¢) and the model output., (¢).
In Fig.[d, the responses to a harmonic signal £ 500 Hz

and A4, = 1 V) of the real overdrive effect pedal (above) and of [11]

the Chebyshev model (below) are compared. The mean squared

error between both i3/SE = 4 - 10~° V. The same test is pro-
vided for the real music signal from an acoustic guitar. Samples
of both signals are depicted in Fd. 7. The mean squared error be-
tween both isM SE = 2-10~* V. Very good agreement has been

obtained for both reconstructed signals, the sine wave signal and

the real musical signal from an acoustic guitar.

5. CONCLUSIONS

In this paper a recently developed method for identification of non-
linear systems has been used with Chebyshev polynomials of first[15]
kind to model a nonlinear audio effect an overdrive effect pedal.

(13]

(14]

The method for analysis and modeling nonlinear systems is based

on synchronized swept sine signal and allows to identify the non- [16]

linear system in a one-path measurement. This method allows then

to model audio devices as a set of frequency respof&€g).

Works are now in progress to perceptually evaluate the weight and

the significance of each frequency response.

(12]
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