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ABSTRACT

The ’Slinky’ spring is a popular and beloved toy for many
children. Like its smaller relatives, used in spring reverberation
units, it can produce interesting sonic behaviors. We explore the
behavior of the ’Slinky’ spring via measurement, and discover that
its sonic characteristics are notably different to those of smaller
springs. We discuss methods of modeling the behavior of a Slinky
via the use of finite-difference techniques and digital waveguides.
We then apply these models in different structures to build a num-
ber of interesting tools for computer-based music production.

1. INTRODUCTION

The ’Slinky’ is a child’s toy, which consists of a large helical
spring. It was invented by Richard James in the early 1940s [1]
and it is notable for its ability to ’automatically’ walk down stairs
after being set in motion by a small initial push. Acousticians
(e.g. Matti Karjalainen) use the Slinky as a tool to explain and ex-
emplify transversal and longitudinal wave vibrations. This paper
treats the Slinky as a sounding object that can be digitally modeled
and used as a musical tool. The initial idea arose from the obser-
vation that the Slinky makes laser gun-like sounds. This sound is
audible when the one end of the Slinky is placed by the ear, while
the other end is let hang freely, and the edge of the helix is tapped,
e.g., with a finger.

In Section 2 of this paper, we present measurement results of
a ’classic’ metal Slinky, and draw conclusions about its behavior
relative to smaller springs. In Section 3, we propose a continu-
ous model for the vibration of the Slinky, and from this continuous
model develop discrete models utilizing finite-difference and digi-
tal waveguide techniques. In Section 4, we propose two signal pro-
cessing structures which allow the modeled Slinky to be used as a
musical tool and audio effect. Supplementary materials, including
audio examples and audio-processing plug-ins are available at the
website associated with this paper1.

1http://www.acoustics.hut.fi/go/dafx10-slinky
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Figure 1: Measurement setup.

2. MEASUREMENTS

The Slinky was arranged as shown in Fig. 1, driven longitudi-
nally and detected via a piezo-electric transducer. The Slinky was
assumed to be linear and time-invariant and its impulse response
measured using a sine-sweep method [2]. The measured thick-
ness of the ribbon forming the Slinky coil varied in the range from
0.076 cm to 0.089 cm, but typically was around 0.084 cm. The
width of the Slinky ribbon was measured to be 0.24 cm and inner
coil diameter was 6.0 cm. The Slinky had 75 turns.

A prepared Slinky was stretched so that adjacent coils did not
touch each other and placed in the vertical direction between a
holder and a shaker (see Fig. 1). A plastic disc was glued to each
end of the measured Slinky. In addition, a piezoelectric micro-
phone was attached to the opposite end. The other plastic disk
was attached to the shaker on the ground, and the end with the
piezo-element was attached to a stand with a clamp at a height of
2 m above the ground. A 21 s long logarithmic sweep from 20
Hz to fs/2 was used as an excitation. A sampling frequency of
fs = 44.1 kHz was used.

Figure 2 shows the spectrogram of the impulse response of
the Slinky, derived from the sine-sweep measurement. As can be
seen in the spectrogram, the impulse response consists of a repeat-
ing series of increasingly dispersed echoes, with low frequencies
traveling more slowly than high frequencies. The form of the re-
sponse looks somewhat different to that of the smaller springs used
in spring reverberation units, as it appears to lack the primary set
of dispersive echoes exhibited by smaller springs in the region be-
low 3-4 kHz [3]. This result is consistent with the model presented
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Figure 2: Spectrogram of a measured Slinky response.

in [3], which predicts that for the typical measurements of a Slinky
spring, this second set of dispersive echoes would be present only
at very low frequencies and hence be both inaudible and not visi-
ble in the spectrogram. Figure 2 also includes three white dashed
curves representing three echoes produced by a continuous disper-
sion model discussed in Sec. 3.

3. MODELING METHODS

Mathematical modeling of helical spring vibration is a relatively
mature topic, although its consideration from the perspective of
audio frequency behavior is newer [4, 3, 5, 6]. The measurements
given in Sec. 2 show that a significant part of the behavior of
smaller springs is absent in the case of the larger Slinky spring.
Therefore, a model which reproduces these behaviors is not neces-
sary. The behavior of the Slinky is more reminiscent of the results
produced by models of a bar [4, 5] or stiff string, and indeed early
models of spring vibration and buckling treated the spring as a uni-
form bar [7]. Therefore, a reasonable starting point for modeling
the behavior of a Slinky would be the Euler-Bernoulli ideal bar
equation, given in dimensionless form:

∂2u

∂t2
= −κ2 ∂

4u

∂x4
+

»
−2σo

∂u

∂t
+ 2σ1

∂3u

∂t∂x2

–
(1)

where u represents transverse displacement, x is a coordinate run-
ning along the bar, t is time and κ is a dimensionless constant
which encompasses scale, stiffness and material properties. The
terms in brackets are additions to the ideal bar equation which rep-
resent loss in the system. The parameters σ0 and σ1 control the
loss characteristics [8]. For a real bar, κ can be specified exactly
in terms of values such as material density, Young’s modulus and
length. However, when modelling a Slinky as a bar these values
become abstract and difficult to measure effectively. We therefore
instead treat κ as a free parameter broadly effecting the dispersive
behavior of the system, which can be adjusted to fit measured re-
sults (or by ear, for artistic purposes).

We assume that an impulse is being transmitted into the system
at x = 0, and received by a transducer at x = 1. If we examine the
dispersion relation of the lossless version of the system (σ0, σ1 =
0), we can derive an expression giving the time taken to perform
one end-to-end traversal of the system at a particular frequency:

TD =
1

2
√

2πκf
(2)

This expression gives the shape of the first dispersive echo to ar-
rive in the impulse response. We can then use this expression to
estimate a reasonable value of κ for the measured Slinky response.
This was achieved by filtering the measured signal with a narrow
FIR band-pass filter centred on a certain frequency. The distance
between the major peaks in the filtered time-series gives the time
taken for two traversals of the Slinky at that frequency. With that
information and (2), we can estimate a value of κ. This process
was repeated at a number of frequencies, and the mean of the κ
estimates taken. This resulted in the value κ = 0.06. In Fig.
2 the three first echoes are plotted as dashes white curves when
κ = 0.06 on top of the measured response. Agreement with the
measured results appears to be reasonably close.

With this continuous model in place, we can approach the
problem of building a discrete model via a number of techniques.
Here, we examine (i) direct discretization of Equation 1 with a
finite-difference (FD) technique, and (ii) approximation of the re-
sponse with a modified single-delay loop (SDL) [9] digital waveg-
uide (DWG) [10] model, similar that of [6].

3.1. Finite-Difference Model

Discretization of differential equations via the application of finite-
difference techniques is a mature topic in many fields of science
and engineering, but audio applications of the technique have only
recently been explored [8]. A flexible and conceptually simple
method of constructing a finite difference scheme is by the appli-
cation of difference operators, which are discrete approximations
to differential operators. These difference operators are applied to
a number (one in this application) of ’grid functions’, which are
discrete version of the dependent variables of the system. For a
system in one spatial dimension and time, the grid function is a
2D array of values. Each ’row’ of such a grid function represents
the distributed state of the system at a particular discrete time-step.
System 1 is second order with respect to time, and therefore in this
case the grid function need only contain two rows – representing
the two previous time steps that are necessary to calculate the new
state of the system. Grid functions can be considered to be analo-
gous to the state-variables of a system.

It is important to note that there are many discrete approxima-
tions to a derivative operator, corresponding to different forms of
numerical integration – Forward Euler, Backwards Euler, Runge-
Kutta etc. These different forms of operator can be mixed and
matched to produce many discretizations of a continuous system
with different properties with respect to accuracy, stability and
computability. In this case, the operators were chosen as follows:

δt+δt−u = −κ2δx+δx+δx−δx−u− 2σ0δt.u+ 2σ1δx+δx−δt−u
(3)

where u now refers to the discrete grid function of the system, δ
denotes a difference operator, and its subscript denotes its type.
The letter of the subscript denotes the variable against which the
differentiation occurs, and the symbol following the letter denotes
the method of integration. For example, δt+ denotes Forward-
Euler integration of time, δt− denotes Backwards-Euler integra-
tion and δt. represents Crank-Nicolson integration. In this case
the time difference operators were chosen in order to produce an
explicit discrete model, and the spatial difference operators were
chosen so that the update of point on the grid function depends
on a distribution of points centred on the update point. This for-
mulation of the equation may now be expanded out to provide a
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Figure 3: Spectrogram of a finite-difference model.
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Figure 4: Block diagram of SDL waveguide model.

scheme for updating the grid function at every time-step. Pivot-
ing boundary conditions

`
u = ∂2u/∂x2 = 0

´
, are chosen for the

continuous model and discretized similarly. The resulting scheme
shows good numerical properties, although as is typical for this
method of discretization, accuracy degrades at high frequencies –
producing some artificial high-frequency dispersion. This effect
can be eliminated by oversampling.

Figure 3 shows the spectrogram of the impulse response of the
output of the finite difference scheme when excited by an impulse.
We choose κ = 0.06, and the values of σ0 and σ1 are set to pro-
duce a gentle roll-off of reverberation time as frequency increases.
The results appear to be in reasonably close agreement with the
measured properties of the Slinky, at least in terms of dispersive
behavior. The presence of several peaks in the reverberation time
of the real Slinky is not reproduced, but this quality is likely a
function of the material of the real Slinky which is modeled only
crudely in this scheme. Sonically, the result of this model is close
to the recording of a real Slinky. It lacks a certain diffuse, rever-
berant quality, but the basic character of the sound is accurately
reproduced.

3.2. Digital Waveguide Model

The Slinky can be seen as a very stiff string. For this approach,
waveguide modeling [10] is a good starting point. Moreover, for
efficiency reasons we will apply an SDL [9, 6] version and need
only one delay line. The structure of the modified single-delay
loop digital waveguide (SDL DWG) model for the Slinky is shown
in Fig. 4 and explained below. The Slinky does not a have a very
easily defined fundamental frequency. Hence, we use the contin-
uous model and (2) for deriving the length of the delay line and
dispersive behaviour of the model.

The dispersive nature of the Slinky is modeled with a chain of
allpass sections using the method presented in [11]. This method
approximates a given group delay with a chain of second-order all-
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Figure 5: Spectrogram of an SDL waveguide model.

pass filters. At low frequencies (when f approaches DC) the group
delay given by (2) approaches infinity. Hence, frequencies below
100 Hz were restricted to the value obtained at 100 Hz (when κ =
0.06 the group delay at this frequency is 3350 samples). With
these values the result was a chain of 113 biquads. This allpass
chain Hd(z) models the first dispersive echo shown in Fig. 2.
Therefore, one chainHd(z) is placed in the direct path. Moreover,
one Hd(z) chain is placed in the feedback path to simulate the
traveling of the impulse back to the input end of the Slinky.

The density of the dispersive echos is calculated as the time de-
lay between two consecutive echos with (2) when f= 22 kHz. This
is because at high frequencies the repeating echos have a relatively
constant time difference at neighboring frequencies, compared to
time differences of echos at low frequencies. When rounding to
integers this gives us a delay line length of 484 samples. The
length of the delay line has to be compensated by the group de-
lay of two Hd(z) chains at 22 kHz, i.e., the delay line length is
shortened by the delay caused by the model in the feedback loop
at 22 kHz. A one-pole filter discussed in [12] was used for mod-
eling the frequency-dependent decay HLP(z). Fig. 5 shows the
spectrogram of the waveguide model. Again, the echos at high
frequencies appear as in measurements and the dispersive behav-
ior is matched nicely.

4. APPLICATIONS

The motivation for the models described in Sec. 3 was the idea
of using the Slinky as a tool for producing interesting musical
sounds and effects. To this end, we implemented the Slinky mod-
els described above as objects in Cycling74’s Max/MSP [13] pro-
gramming environment. These objects were then used to pro-
duce larger audio-effect and instrument structures, implemented in
Max/MSP and ’Max For Live’ as plugins for the Ableton Live mu-
sic production environment [14]. The objects and plugins, along
with further information on their structure, are available at http:
//www.acoustics.hut.fi/go/dafx10-slinky.

4.1. Feedback Slinky Network

The Feedback Slinky Network (FSN) is inspired by the idea of the
Feedback Delay Network (FDN), as introduced by Jot [15]. We
implement the FSN as four Slinky models connected by a ma-
trix specifying the gains between the outputs and inputs of each
of the models. The κ parameter and loss characteristics of each
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Slinky can be varied by the user. This structure behaves notably
differently to the FDN, as unlike the delay-line elements of the
FDN the Slinky model elements of the FSN have an extended im-
pulse response. Consequently, feedback between these elements
can quickly cause unbounded growth in the system. To counter-
act this effect, we place tanh wave-shaping elements after each
Slinky model, which limit the maximum signal value possible.

A feedback matrix containing low values, combined with low
values of κ, produces a reverb-like effect. Raising the value of κ
for the Slinky models results in a structure that sounds more like
a complex resonator. Raising the values in the feedback matrix
results in self-oscillation of the system, turning it into more of a
sound-source than an processing device. Modulating the κ values
of the Slinky models whilst the system is self-oscillating produces
interesting shifting inharmonic drone sounds.

4.2. Highly Dispersive String-Instrument

As discussed above, in Sec. 3.2, the behavior of the Slinky strongly
resembles that of an extremely dispersive string. We can therefore
apply a single Slinky model, almost directly, to produce a modeled
instrument that behaves like an extremely dispersive version of a
string instrument. We implement such an instrument as a single
Slinky model, with a user controllable excitation method. The ex-
citation method consists of a filtered noise-source, combined with
an amplitude envelope. The noise-filter consists of independently
variable one-pole high-pass and low-pass filters connected in se-
ries. By manipulation of the amplitude envelope and noise-filter
parameters, the user can excite the model in a variety of ways –
ranging from short pluck-like excitations to slow excitations rem-
iniscent of bowing [10]. Reception of a MIDI note-on message
triggers the amplitude envelope of the excitation signal. Variation
of pitch can be accomplished by altering the value of κ, in the case
of the finite difference model, or by altering the delay-line length
in the case of the modified SDL waveguide model. Classification
of the perceived pitch of the model is difficult due to the inhar-
monic qualities, therefore no attempt is made to tune the instru-
ment exactly. Instead, the user can specify the way in which the
’pitch’ scales with the incoming MIDI note number. The resulting
instrument is capable of producing a variety of sounds, from sci-fi
laser-gun zaps to more conventional string-like tones.

5. CONCLUSIONS

This paper presented sonic observations, digital models, and au-
dio applications of the well-known spring toy called the Slinky.
The main acoustic observation is that the helical spring of the
Slinky is highly dispersive. The measured impulse response con-
sists of decaying echos that have a dispersive character. Based
on this analysis, we proposed a continuous model of Slinky vi-
bration. This model was then used to produce discrete models
via finite-difference and digital waveguide techniques. Both mod-
els recreate the basic characteristics of the Slinky response fairly
well. The models were then developed into two parametric musical
devices or sound effects. The Feedback Slinky Network consists
of Slinky models that are connected through a feedback matrix.
This network can create filtering effects from reverb-like sounds
to a self-oscillating system. Another application uses the Slinky
to construct a model of a highly dispersive and inharmonic string-
like instrument, which is played by excitation with a filtered and
shaped noise signal. In both applications the user can control the
dispersiveness and decay characteristics of the models. The results

of these applications are interesting, and not easily reproduced us-
ing physical Slinky springs.
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