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ABSTRACT

In this paper, we study tempo estimation using spectral templates
coming from unsupervised or supervised learning given a database
annotated into tempo. More precisely, we study the inclusion of
these templates in our tempo estimation algorithm of [1]. For
this, we consider as periodicity observation a 48-dimensions vec-
tor obtained by sampling the value of the amplitude of the DFT at
tempo-related frequencies. We name it spectral template. A set of
reference spectral templates is then learned in an unsupervised or
supervised way from an annotated database. These reference spec-
tral templates combined with all the possible tempo assumptions
constitute the hidden states which we decode using a Viterbi algo-
rithm. Experiments are then performed on the “ballroom dancer”
test-set which allows concluding on improvement over state-of-
the-art. In particular, we discuss the use of prior tempo probabili-
ties. It should be noted however that these results are only indica-
tive considering that the training and test-set are the same in this
preliminary experiment.

1. INTRODUCTION

Given the importance of tempo information for a large num-
ber of Music Information Retrieval tasks (front-end for many
beat-tracking algorithms, therefore for many downbeat-tracking,
chord estimation, cover version detection or beat-synchronous al-
gorithms, direct use of tempo information for performing search
over music databases) and given the performance obtained by cur-
rent algorithms (see [2] for an overview of recent results), tempo
estimation still remains an important research field.

1.1. Related works

Tempo estimation algorithms can be first classified according to
the analyzed materials: - symbolic data or - audio data. Algorithms
based on audio analysis usually start by a front-end which either
- plays the role of an “audio-to-symbolic” translator [3], [4], - or
extracts frame-based audio features such as energy, energy varia-
tions, . . . [5], [6], [7]. Depending on the kind of information pro-
vided by this front-end and the context of the application, a large
variety of processes are used to track/estimate the tempo: - time
interval histograms [8] [9], - periodicity measure (Fourier trans-
form, auto-correlation function, narrowed-ACF, wavelets, comb
filter-bank). The periodicity measure can be used - to estimate
directly the tempo or - to serve as observation for the estimation
of the whole metrical structure through (probabilistic) models [7]
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[4] [10]. Some authors propose the use of templates for tempo es-
timation - in the time/phase domain [10] [7] [11], - in the spectral
domain [1]. We refer the reader to [12] for a detailed report on
state of the art tempo estimation algorithms. The work which is
the most closely related to our work is the one of [13]. In this,
Eronen proposes a more detailed use of templates using a database
of templates and a K-NN-regression to find the best tempo corre-
sponding to a target template representing an unknown signal.

1.2. Motivating previous results

In this paper, we study the extension of our previous tempo-
estimation algorithm [1] to the inclusion of spectral templates spe-
cific to each rhythm-class. The algorithm proposed in [1] relies
on the simultaneous estimation of tempo and meter using a set
of spectral templates representing all the possible combinations
of tempo and meter. For this, three meters are considered: 22 (bi-
nary grouping of tactus into bar/ binary subdivision into tatum), 23
(binary/ ternary) and 32 (ternary/ binary). The spectral templates
corresponding to the three meters have been manually drawn by
observation. We named them Meter-Beat-Subdivision-Templates
(MBSTs). The combination of tempo and meter are modeled as
hidden states and a Viterbi algorithm is used to find the most-likely
hidden states path over time given the DFT/ Frequency-Mapped-
ACF periodicity observations.

Because the MBSTs only partially represent the various pos-
sible spectral templates for a given tempo and meter, we propose
in this paper to use spectral templates obtained by unsupervised or
supervised learning given a database annotated into tempo. This
should allow to better represent the diversity of rhythm character-
istics. For this, we rely on our recent results of [14] and [15].

In [14], we show that using spectral-templates derived di-
rectly from the DFT allows obtaining a high classification accuracy
(88%) for music genres which are related to the rhythm character-
istics of the music (“ballroom dancer” test-set). From [14], we can
conclude that the characteristics of a rhythm are well described by
spectral-templates derived from the DFT.

In [15], we propose a “copy and scale” method for obtaining
directly the estimation of tempo, beat-positions and class of an un-
known item. A K-NN algorithm (which uses a complex distance
applied to a complex-spectral-template representation) is used to
find the closest database-item to a given unknown target. The an-
notation of the closest item is then “copied and scaled (to the un-
known target’s tempo and position)” to obtain the estimation of
tempo, beat-positions and class of the unknown target. In [15] we
only test a limited set of tempo assumption (the ones correspond-
ing to the potential octave errors of the algorithm of [1]). Also,
only the subset of the K-NN database for which the item has an
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initial tempo close to the target’s tempo assumption is considered.
This inherently creates a dependency between rhythm pattern and
tempo, and applies a sort of prior tempo probability. We show that
using this simple and direct method, tempo accuracy (excluding
octave error) can be improved from 65.47% (using [1]) to 67.62%.
When considering only the subset of items which have been cor-
rectly classified, it improves from 60.33% (using [1]) to 97.88%.
From this, we can conclude that the characteristics of the rhythm
provided by the spectral-templates allow improving tempo estima-
tion; we also conclude that the characteristics of the rhythm are
specific to the tempo, i.e. not all rhythm patterns can be found at
a given tempo. However, no temporal continuity between frames
are taken into account in the K-NN approach of [15].

1.3. Paper content and organization

In this study, we propose to replace the MBST approach of [1] by a
Spectral-Template approach obtained either by using unsupervised
or supervised learning on a database annotated into tempo. While
in [1], the DFT/ Frequency-Mapped ACF was used as a periodicity
measure, we use here a sampled and tempo-normalized amplitude
DFT. We show in [14] [15] that the DFT provides better results
for rhythm description (not for tempo estimation) than the DFT/
FM-ACF.

In part 2 we explain the proposed approach. We explain the
sampled and tempo-normalized spectral templates representation
(part 2.1), how the reference spectral templates mj and tempo Bj

are created using unsupervised or supervised learning (part 2.2),
and the way we introduce them in the hidden states of our Viterbi
decoding algorithm (part 2.3). We then perform an evaluation on
the 698-tracks “ballroom dancer” test-set. We compare the use of
our previous MBST, and the proposed unsupervised or supervised
Reference Spectral-Templates. We also test the influence of the
use of prior tempo observation on the results. We finally conclude
in part 4 and gives direction for future works. We give an overview
of the proposed approach in Figure 1.

2. TEMPO ESTIMATION USING UNSUPERVISED OR
SUPERVISED TRAINED SPECTRAL TEMPLATES

2.1. Spectral Templates representation

In [14], we have proposed to represent the rhythmic content of a
signal frame using sampled and tempo-normalized values of the
amplitude spectrum of the local onset-energy function.

For a given audio item, we first extract an onset-energy-
function representing at each time the likelihood of an onset. In
this study, we have used the method proposed in [1] but any other
methods can be used. We note o(n) the corresponding function.
It has a sampling rate of 172Hz. Around each time frame tm,
we compute the amplitude spectrum of o(n) using a hamming
analysis window of length 8s and a hop size of 0.5s. We note it
Yo(fk, tm) where fk represent the Fourier frequencies. Consid-
ering a tempo b(tm) at time tm (expressed in Hz), we then sam-
pled Yo(fk, tm) at the frequencies fk = b(tm) · fl with fl =
[ 1
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Figure 1: The periodicity observation Yo(fk, tm) is extracted over
time. At each frame, we estimate the likelihood that Yo(fk, tm)
corresponds to the hidden state sij defined as tempo bi and Ref-
erence Spectral-Template mj . For each tempo assumption bi

(bi=100 in the figure), we create from Yo(fk, tm) the sampled and
tempo-normalized vector Yo(l, tm, bi) (l ∈ [1, 48]), named Spec-
tral Template. Yo(l, tm, bi) is then compared to the set of Refer-
ence Spectral Templates mj = Yj(l) (j ∈ [1, J ] with J = 8 in the
present experiment) using a one-minus-cosine distance. This dis-
tance is considered as the likelihood to observe sij given the ob-
servation of Yo(fk, tm). Only the subset of mj which initial tempo
Bj is close to the tempo assumption bi are considered (bi = 100
and B4, B5, B6 in the figure).

tempi b, their spectral-template Yo(l, tm, b) will be similar. This
is because Yo(l, tm, b) has been made tempo-independent. In the
case of tempo estimation, b is an unknown variable. The goal is
therefore to find b such that the corresponding vector Yo(l, tm, b)
looks close to one of the j ∈ [1, J ] prototype vectors Yj(l). The
prototype vectors are trained using real data but annotated tempo
b̂. They represent therefore the average (over many o) shape of
Yo(l, tm, b = b̂) for various rhythms. Therefore, if Yo(l, tm, b) is
close to one of the Yj(l), it is likely to have a tempo b. We now
study the estimation of the Yj(l).

2.2. Creating reference spectral templates

Given a test-set annotated into tempo b̂, we extract the series of
sampled and tempo-normalized vector Yo(l, tm, b̂) for each track
of the test-set and compute, for each track, its vector of mean-
value-over-time Yo(l, b̂). From this set of vectors, we study two
possibilities to create reference spectral templates.

Unsupervised learning: Given the whole set of files of the
test-set, we apply a fuzzy k-means algorithm. For this, we con-
sider for each track the vector obtained by concatenating the spec-
tral template Yo(l, b̂) and the tempo b̂ (48+1=49 dimensions). Do-
ing this, we force the clustering to group tracks which are similar
in spectral template Yo(l, b̂) but also in tempo b̂. For a cluster-
ing using J clusters, the resulting centroids of the clusters provide
the set of J reference spectral templates mj = Yj(l) (we om-
mit the b̂ variable in the function since the templates are tempo-
independent) and their associated reference tempo noted Bj . For
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the evaluation of part 3, we have used J = 8 clusters.
Supervised learning: Given a test-set annotated into J mu-

sic genre classes, we compute for each class the mean value of the
Yo(l, b̂) and tempo b̂ for the tracks belonging to this class. The
resulting mean-vectors provide the set of J reference spectral tem-
plates mj = Yj(l) and their associated reference tempo noted Bj .
Since our learning will be based on the “ballroom dancer” test-set
which has 8 classes, J = 8 also in this case.

2.3. Introduction into hidden variables

We explain the introduction of the spectral templates in the Viterbi
decoding algorithm of [1] using the same notation as in [1].

The dominant periodicities Yo(fk, tm) are estimated at each
time tm. Yo(fk, tm) does not only depend on the tempo but also
on the characteristics of the rhythm. We therefore look for the tem-
poral path of tempo and rhythm characteristics that best explain
Yo(fk, tm). We define a hidden state as a specific combination
of a tempo frequency bi and a specific reference spectral-template
mj . The three probabilities of the Viterbi decoding are:

• the prior probability of each state: pprior(sij(t0))

• the transition probability between two states:
pt(sij(tm+1)|skl(tm))

• the emission probability of the states:
pemi(Yo(fk, tm)|sij(tm))

In part 3, we will test two prior probabilities. The first is
the one described in [1], it favors the detection of tempo around
120bpm (in the range 50-150bpm) but do not favor any reference
spectral-templates in particular. It is modeled as a Gaussian pdf
pprior(sij(t0)) = pprior(bi(t0)) = Nµ=120,σ=80(bi). The sec-
ond is a uniform probability, i.e. it does not favor any tempo or
reference spectral-templates in particular.

The transition probability is the one defined in [1], i.e. it favors
tempo continuity over time and disadvantage reference spectral-
template changes.

2.3.1. Emission probability in the case of MBST

In [1], the emission probabilities are computed using a score. For a
specific tempo bi and MBST mj , we compute a score defined as a
weighted sum of the values of Yo(fk, tm) at specific frequencies:
scorei,j(Yo(fk, tm)) =

P5
r=1 αj,r · Yo(fk = βrbi, tm), where

β represents the various ratios of the considered frequency fk to
the tempo frequency bi of the state sij : β =

ˆ
1
3
, 1

2
, 1, 1.5, 2, 3

˜
.

These ratios correspond to significant frequency components for
the triple meter, duple meter, tempo, “penalty”, simple and com-
pound meter. αj represents the weightings of each of these compo-
nents. These weightings depend on the MBST mj of the state sij

and have been manually chosen to better discriminate the various
MBSTs (see [1] for details).

2.3.2. Emission probability in the case of spectral-templates

In the case of the spectral-templates, the scorei,j(Yo(fk, tm)) (the
probability to observe Yo(fk, tm) given tempo bi and reference
spectral-templates mj) is computed as follows.

For a given tempo assumption bi, we first compute (us-
ing the method explained in part 2.1) the sampled and tempo-
normalized spectral representation Yo(l, tm, bi) corresponding to
this bi. From the set of reference spectral-templates mj , we

then select the ones which have a reference tempo Bj “close” to
the current tempo assumption bi. The “closeness” is defined as
abs(log2(

bi
Bj

)) < 0.3785. The mj which are not “close” receive
a likelihood (score) of zero. For the subset of “close” mj , we com-
pute the one-minus-cosine distance between Yo(l, tm, bi) and the
reference spectral templates mj = Yj(l).

3. EVALUATION

3.1. Test-set

We perform the evaluation on the “ballroom dancer” test-set [16].
We have chosen this test-set since the music genres provided with
it (ChaChaCha, Jive, Quickstep, Rumba, Samba, Tango, Viennese-
Waltz and Slow-Waltz) are closely related to the rhythm charac-
teristics of the tracks. It therefore facilitates the experiment when
using reference spectral-templates obtained by supervised learning
based on music genre classes. It should be noted that both spectral-
templates (unsupervised or supervised) learning and evaluation of
tempo estimation are performed on the same test-set. Results ob-
tained should therefore only be considered as indicative prelimi-
nary results.

3.2. Evaluation scenario

For each track, we compare the annotated tempo and the estimated
tempo obtained using • mj= the 22/23/32 MBST, • mj= the ref-
erence spectral-templates obtained by unsupervised learning (ST-
Unsupervised), • mj= the reference spectral-templates obtained
by supervised learning (ST-Supervised).

We also compare • the use of a prior tempo probability favor-
ing tempo detection around 120bpm, • the use of a uniform tempo
probability which do not favor any tempo in particular.

3.3. Evaluation rules

To measure the performances of tempo estimation, we have used
the two measures proposed by [17]: • Accuracy1: measures the
number of tracks for which the estimated tempo is within a 4%
Tolerance Window of the annotated tempo, • Accuracy2: within
4% of either 1/3, 1/2, 1, 2 or 3 the annotated tempo. Accuracy 2
therefore considers octave errors as correct.

3.4. Results and discussion

The global Accuracy 1/2 are indicated into Table 1. Detailed Ac-
curacy 1/2 per class are given into Table 2. We also indicate into
Table 2 the mean-over-class Accuracy 1/2 which differ from the
global ones considering the non-equal distribution of the test-set.

Table 1: Tempo estimation in terms of Accuracy 1 and 2 us-
ing MBST, ST-Unsupervised or ST-Supervised on the “ballroom
dancer” test-set..
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Table 2: Tempo estimation in terms of Accuracy 1 and 2 per class
using MBST, ST-Unsupervised or ST-Supervised on the “ballroom
dancer” test-set..

Using prior tempo probabilities: The baseline results ob-
tained with the MBST are Acc1=65% (Acc2=89.4%) 1. Using
the ST-Unsupervised leads to 63.9% (90.7%), i.e. a slightly better
Accuracy 2 than MBST but a lower Accuracy 1. Using the ST-
Supervised leads to 62.5% (89.1%), i.e. lower Accuracy 1 and 2
than MBST and ST-Unsupervised.

As can be seen in Table 2, ST-Unsupervised provides a per-
fect Accuracy2 for the classes ChaChaCha, Jive, Quickstep and
Tango (100%). This explains the mean-over-class-Accuracy2 of
92% (global average Accuracy2 of 90.7%). However the Accu-
racy1 obtained for the classes Jive, Quickstep and Viennese-Waltz
is very low. The ST-Unsupervised approach seems to suffer from
important octave errors.

Using uniform tempo probabilities: Because we did not
observe these octave errors in our KNN-approach of [15] and be-
cause this KNN-approach do not use any prior tempo probability2

we redo the same experiment neglecting the prior tempo probabil-
ity, i.e. we set the prior tempo probability to a uniform probability.

The MBST approach now leads to 44.0% (87.1%) while
the ST-Unsupervised approach leads to 72.9% (93.4%) and the
ST-Supervised to 75.2% (94.8%). Therefore, the use of prior
information has an inverse influence on the MBST and ST-
Unsupervised/ST-Supervised approaches: a prior tempo probabil-
ity is beneficial for the MBST approach while a uniform tempo
probability is beneficial for the ST-Unsupervised/ST-Supervised
approaches.

4. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed the use of Spectral Templates ob-
tained by unsupervised or supervised learning on a database anno-
tated into tempo. The results obtained with the ST-Unsupervised
and ST-Supervised approaches without prior tempo probability
improve upon previously published results. The best results ob-
tained during the ISMIR-2004 [17] tempo induction contest on this
test-set were 63.2% (92%). The results obtained here are above:
72.9% (93.4%) with ST-Unsupervised and 75.2% (94.8%) with
ST-Supervised. It should be noted however that the results pre-
sented here at not directly comparable to the one of [17] since we
use a learning stage which use the characteristics of the test-set.

1It should be noted that the results indicated here are not directly com-
parable with the ones published in [1] for the same test-set. Indeed, while
in [1] we have used the DFT/FM-ACF as periodicity observation, we use
here the DFT instead in order to be able to use the spectral templates pro-
posed in [14].

2It should be noted that prior tempo information is somehow indirectly
encoded by the dependency between mj and Bj and the fact that we only
consider the mj with a Bj close to the tempo assumption bi.

The performances obtained with the ST-Unsupervised ap-
proach, while lower than the ones obtained with the ST-
Supervised, are very promising since ST-Unsupervised does not
require a database labeled into classes (of music genre or rhythm
genre). Any database annotated into tempo can therefore be used
for the creation of the reference spectral templates mj .

Future works will therefore concentrate on extending the set of
mj and on testing the validity of the proposed approach when the
test-set has not been used for the creation of the reference spectral
templates.
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