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ABSTRACT

The use of signal models is one of the key factors enabling
us to establish high quality signal transformation algorithms
with intuitive high level control parameters. In the present
article we will discuss signal models, and the signal trans-
formation algorithms that are based on these models, in re-
lation to the physical properties of the sound source and
the properties of human sound perception. We will argue
that the implementation of perceptually intuitive high qual-
ity signal transformation algorithms requires strong links
between the signal models and the perceptually relevant
physical properties of the sound source. We will present an
overview over the history of 2 sound models that are used
for sound transformation and will show how the past and fu-
ture evolution of sound transformation algorithms is driven
by our understanding of the physical world.

1. INTRODUCTION

Signal transformation is one of the key topics of the DAFx
conference and in the present article we will discuss signal
transformation algorithms that can be controlled by means
of high level controls. The term high level control will be
used in the following for controls using terminology related
to the everyday experience of ordinary people. For example
making a sound longer is certainly an ambiguous specifi-
cation but most people will have an intuitive understanding
what they expect as result of this operation.

There are different classes of signal transformation algo-
rithms and not in all situations high level controls are appro-
priate. Filters for example modify the energy distribution
of the sound signals. The operators are relatively simple
and have correspondence in the real life, but in many situ-
ations the control of filtering operations is best performed
by means of direct specification of the modifications of the
spectral content (e.g., increase amplitudes of high frequency
content). High level control is required if the filtering op-
eration is specified in terms of physical configurations of
the filter as for example (change of room acoustics, change
of resonator body of an instrument). For other more com-
plex signal transformation algorithms, as for example ring

modulation, there do not exist any real world operations that
would allow to establish an intuitive control. In these cases
intuitive control can only be achieved by means of train-
ing of the user!. Note that research activities that try to use
sound descriptors to control sound transformation [1] will
not be considered in the following. While signal descriptors
like spectral centroid and spectral tilt extend the vocabulary
for sound description, they do not introduce a different level
of description by themselves.

There are many research topics that are related to high
level control of signal transformation. Modification of the
instrumentation for a given music signal, modification of
the score or remixing of the instruments in a musical piece
[2, 3, 4], modification of speaker characteristics (gender,
age, complete identity, emotion) for a given speech sig-
nal [5, 6, 7, 8, 9, 10], manipulation of musical expression
[11, 12], modification of the room acoustics or sound source
position. The common factor of all these tasks is the ref-
erence to the physical world. The transformations are de-
scribed in common language and it is expected that the al-
gorithms finds one (of often many) possible transformations
that are compatible with the description.

In the first part of the article some basic properties of
the signal models that facilitate the introduction of this kind
of high-level controls into signal transformation algorithms
will be introduced. The second part of the article will dis-
cuss 2 important signal models that up to today have had a
major impact on the construction of signal transformation
algorithms. These models are the sinusoidal signal model
[13, 14] and the source-filter model [15, 16]. The histori-
cal evolution of these 2 models will be reviewed and some
recent trends that may allow improving and extending the
signal transformation algorithms that are in use today are
discussed.

To prevent the bibliography becoming too long only a
few hopefully central references are given for most topics
discussed. A general guideline was to prefer the selection
of papers that have been presented at a DAFx conference

'While in the present article training is not considered as intuitive this
does not exclude that after some time of experience a user may establish an
intuitive understanding about every sound transformation algorithm he/she
is working with.



whenever possible.

2. HIGH LEVEL CONTROL OF SIGNAL
TRANSFORMATION

The discussion is started with an investigation into the prop-
erties of the sound representation that simplifies the high
level control of signal transformation algorithms. The ob-
jective is to determine signal representations that represent
the sound signal such that the original signal can be repro-
duced with no degradation and at the same time support the
use of intuitive parameters to control sound signal transfor-
mation.

2.1. Intuitive sound transformation

Our intuition about how a signal should sound that is trans-
formed using high level controls is related directly to our
experience, our personal live in the physical world. As a
simple examples one may consider the time stretching sig-
nal operator, one of the operators that has triggered major
research activities. This operator is related to the physical
concept of slow and fast playing style. One of the prob-
lems here is the ambiguity in the specification. There are
infinitely many possibilities to play slower and there are
even more possibilities to construct a signal operator that
time stretches a given sound signal.

While the duration is the only factor that is unambigu-
ously specified the duration of the transformed sound sig-
nal is certainly not the only criteria that will be used to
evaluate the resulting sound. Additionally, the transformed
sound should be perceptually close to the sound that could
have been produced by the physical sound source when it
is operated more slowly. One of the well known exam-
ples of this problem is related to time stretching of onsets
[17, 18, 19, 20]. It is generally considered that time stretch-
ing fast sound onsets generates strong artifacts if the onset
part is treated with the same algorithm that is applied to the
stationary part. While the time scale modification is per-
fect in both cases, the separate treatment of the onsets will
generally be preferred because it preserves the sound prop-
erties of the sound signals that are generated by the physical
sound source when played more slowly. For a piano signal
for example, playing slow does not change the duration of
the attack. Accordingly the preservation of onset charac-
teristics of time stretched piano signals is of crucial impor-
tance. For the case of a violin, however, onset times may
or may not change with the playing tempo, and therefore,
onset preservation has been considered much less an issue
when violin sounds are transformed”. The more a given al-

2 A special case are sound sources that do not change at all when tempo
is modified. Playing a drum slowly will hardly change the sound itself,
but will only separate the original drum beat signals. Accordingly, time
stretching drum signals should ideally be performed by means of first sep-
arating the individual drum beat signals and then re-synthesizing displaced

gorithm will be able to adapt its behavior to the signal that is
treated, the more it will be considered to establish high level
controls. From this perspective one may conclude that ex-
isting algorithms are generally not capable to establishment
an advanced degree of high level controls.

2.2. Signal models for intuitive sound transformation

Having described the intuition that is the basis of high level
sound transformation the properties of the signal models
that allow implementing these intuitive controls can be ad-
dressed. Following the discussion above it appears that a
requirement for an appropriate model would be the use of
perceptually relevant components that have a simple rela-
tion with the physical properties of the sound sources. The
simpler the relation between the perceptually relevant prop-
erties of the physical sound source and the signal model the
easier it should be to provide controls that reflect our intu-
ition that is built on physical interaction.

These kind of relations exist for example for models that
are represented in terms of the vibration modes. Fortunately
these individual modes can be represented in a rather sim-
ple manner as a sinusoid with time-varying amplitude and
frequency. The relation between sinusoidal models and vi-
bration modes is well know and has been used under the
name modal synthesis for quite a while [21, 22]. In the case
of analysis re-synthesis systems the modal representation is
achieved by means of the sinusoidal model [13, 14, 16]. It
can be concluded that the sinusoidal model establishes the
desired link between the physical and the perceptual world.
The vibrating modes, however, are generally not sufficient
to describe a given sound signal. Noise sources are present
in nearly all cases, for example as a side effect of the excita-
tion. Because noise is generally perceived as an individual
component we can add a noise component into our model
without destroying the simplicity of the transformation.

A mathematical formulation of the sinusoids plus noise
model that has been discussed is
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Here py, is a sinusoid with time varying amplitude a (n) and
phase O (n) and s(n) is the signal that consists of a super-
position of sinusoids and a noise component r(n). Because
all components of the sinusoidal model can independently
vary amplitude and frequency over time, the model allows
representing onsets, vibrato and other signal modulations.
Accordingly, an additional transient component [23] is un-
necessary at least from a conceptual point of view.

versions these individual drum beats.



2.2.1. Signal transformation with the sinusoids plus
noise model

The sinusoids plus noise model discussed up to now does
contain the information that is required for high level sig-
nal transformation, but the information is provided in a
way that is still too far away from the physical structure of
sound sources for intuitive controls to be established. When
changing the note on a guitar, for example, the resonator
part stays approximately the same, but the excitation oscil-
lator changes its properties. Accordingly, it would be bene-
ficial if one could separate the modal structure of the source
oscillator from the transfer function of the source resonator
filter. This type of separation is generally achieved by
means of the source/filter model [16] that adds a separate
resonator filter into the model given by eq. (1). If the sig-
nal spectrum is represented in terms of a short time Fourier
transform (STFT) a model including the source filter model
can be written in the following form

S(w,n) = ZE(w,n)P,;(w,n)—i—N(w,n)R’(w,n). ()
k

Here P/ (w,n) is the STFT of the sinusoidal component k
that represents only the amplitude and phase evolution that
is due to the excitation source. The effect of the resonator
and radiation is summarized in F(w,n). This component
may be time varying (e.g. if sound source position changes).
For the noise component a similar split into the noise source
component R'(w,n) and a potentially time varying noise
filter N(w,n) is used. Note, that the distinction of sinu-
soidal resonator and radiation filter and noise resonator and
radiation filter is an extension of the standard source fil-
ter model. It can be justified physically in many situations
(wind noise not passing through the flute body) and the ef-
fects of these separate filters have been observed in a num-
ber of recent studies related to transformation of expressive
playing styles at IRCAM. These results will be published
elsewhere.

The sinusoidal model is especially well suited for high
level control of signal transformations because most physi-
cal manipulations require simply a modification of the am-
plitude and frequency of the vibration modes which could
in principle be implemented rather perfectly by means of
manipulating the amplitude and frequency parameter tra-
jectories of the model. For some sound sources, notably
voice, the sinusoidal components have to be modified fol-
lowing an additional constraint (shape invariant signal mod-
ification [24, 25, 26]). An important precondition to be able
to keep the parameter trajectory mapping simple is the fact
that the sinusoidal components representing the stable res-
onating modes are individually resolved in the signal repre-
sentation. If this is not the case time stretching for example
will introduce modification of the beating pattern of the si-
nusoidal components and parameter trajectory mapping be-
comes extremely complicated.

2.3. Model implementation

Before the discussion of the history and future evolution
of the sinusoids plus noise model and the source filter
model a short note on the implementation seems appro-
priate. While many implementations of the sinusoids plus
noise model use the explicit formulation of the model eq.
(1) [18, 27, 28, 29] other implementations are possible and
often beneficial. An important example is the phase vocoder
[30, 31] that provides an implicit sinusoidal model that
achieves a very efficient (in calculation time and quality)
signal representation.

3. PAST, PRESENT AND FUTURE

The following section contains a short history of the evolu-
tion of the 2 model components that have been discussed,
including especially the key steps that have been taken
to bring the signal transformation algorithms closer to the
physical reality.

3.1. Sinusoids plus noise model

The sinusoidal models have their origin in the vocoder de-
veloped by Dudley in 1939 [32]. The ideas of Dudley
evolved with the invention of computers and digital signal
processing into early versions of the phase vocoder [33].
These phase vocoders used very low number of bands (30
bands with 100Hz bandwidth) such that the resolution of the
individual sinusoids could not be guaranteed. With further
increasing computing capacities and the use of FFT algo-
rithms the number of bands (today bins) increased and as
a next step explicit harmonic sinusoidal models were de-
veloped [34]. The use of the sinusoidal modeling tech-
niques for musical applications also started with the early
phase vocoder [35] and evolved into an explicit sinusoidal
model [36]. The main advantage of the explicit sinusoidal
model compared to the phase vocoder was the peak pick-
ing that was part of the analysis for the explicit sinusoidal
models. The peak picking and subsequent parameter esti-
mation did allow to increase frequency resolution and im-
proved the tracking of time varying sinusoids. As a next
step the sinusoidal model was extended by means of a
dedicated noise model [13] so that the sinusoidal model
present in eq. (1) was completed. After the introduction
of the intra-sinusoidal phase synchronization [31] the phase
vocoder has evolved into an implicit implementation of a si-
nusoidal model that generally is computationally more effi-
cient than the explicit sinusoidal model. Due to the fact that
the phase vocoder representation achieves a better represen-
tation of potential structure in the aperiodic (noise) compo-
nent it often achieves better quality than the explicit sinu-
soidal model.

The main problem with the sinusoids plus noise model
is related to finding the model parameters from the original



signal. This problem has triggered numerous research ef-
forts over the last decades and despite the many interesting
and powerful methods that have been developed and that ex-
tended the boundaries of the signal representation that can
be obtained using this model there remain problems that are
still considered unsolved by today.

3.1.1. Sinusoids and noise model estimation

The first parameter estimators that have been developed
imposed very strong constraints on the parameters of the
sinusoids, notably that the parameter changes were very
slow [36]. A consequence of this constraint is the fact
that the parameter trajectories representing fast onsets of
sinusoidal components could not be correctly estimated.
To improve the representation of fast onsets in the sinu-
soidal models significant research efforts were undertaken
[37, 38, 18, 39, 40] most of which make use of the time
reassignment operators [41] that significantly reduces onset
smearing but unfortunately will systematically cut the si-
nusoidal onsets [39, 40]. Another approach to onset repre-
sentation that has been proposed is to extend the sinusoidal
plus noise model by means of a dedicated transient compo-
nent [23]. The main drawback of this approach is the fact
that transient and non transient parts of sinusoidal compo-
nents need to be processed independently ensuring a smooth
connection between these 2 parts after processing. For the
phase vocoder implementation of the sinusoids plus noise
model onset preservation methods have been proposed in
[19, 20]. A rather different approach that achieves increased
time and frequency resolution by means of using stronger
constraints on the sinusoidal components are high resolu-
tion methods [42].

The strong bias that exists for most of the sinusoidal pa-
rameter estimators whenever the sinusoidal parameters vary
over time has recently let to the investigation of parameter
estimation methods with reduced bias [43, 44, 45]. The use
of these bias reduced estimators significantly extends the
range of the signals that may be represented reliably.

Up to now only the parameter estimation for the sinu-
soidal components has been considered. However, a si-
nusoids plus noise model contains a noise component as
well. The noise components have initially simply collected
the residual part of the signal after subtracting all sinusoids
[13]. With the rather high quality sinusoidal parameter esti-
mators that exist today, more effort has been invested as well
into the estimation and representation of the noise compo-
nents. This shift of interest is especially visible in the in-
creasing number of algorithms that address the problem to
separate sinusoidal and noise components even before the
analysis has been started [46, 47, 48, 49, 50, 51]. In our re-
search this separation has proven to be of major importance
for the solution of a number of research problems, notably
the estimation of multiple fundamental frequencies in poly-
phonic audio [52, 53] and the shape invariant phase vocoder

implementation [26].

3.1.2. Outlook

The discussion of existing approaches in the previous sec-
tion reveals that the sinusoidal and transient components
have received a significant part of the research effort that
has been invested into the related signal models. The noise
components seem to be somewhat neglected and given that
rather high quality transformation algorithms for the sinu-
soidal and transient components are available today one can
expect that the appropriate representation and transforma-
tion of the wide variety of structure that the aperiodic signal
component may exhibit [54] receives more interest. The
implicit sinusoids plus noise model that is used in the phase
vocoder often leads to an improved transformation of noise
components that preserves some of the structure of the noise
components [26], but one can expect that more research will
be needed. Some research activities that try to capture the
complex time frequency structure that characterizes the ape-
riodic components have already been started [55] and it can
be expected that these results will be refined and hopefully
at some point be integrated into the signal transformation
algorithms.

Another open research problem is the appropriate se-
lection of the time and frequency resolution of the analy-
sis. For a long time the research and applications have used
standard short time Fourier transform algorithms to derive
the spectral domain representation of the signal. One can
expect that Wavelets providing a frequency dependent fre-
quency and time resolution will not be of major importance
for signal transformation algorithms. Our main argument
here would be the fact that sinusoidal components of har-
monic sounds do not require any adaptation of the frequency
resolution as a function of the frequency. They could benefit
from an adaptation of the frequency resolution as a function
of the pitch and it can be expected that the research into
signal representation with time varying signal adaptive time
frequency resolution [56, 57] will be a key to resolve the
sometimes contradicting demands a signal may pose on to-
day’s transformation algorithms.

As another central point of research appears the work
on polyphonic signal separation and editing. While there
exist numerous proposals to use non parametric decompo-
sition algorithms [58, 59, 60] for signal decomposition the
first commercially available system, Melodyne DNA [4], is
based on a sinusoidal and noise model. One could argue that
the strong, physically and perceptually relevant constraints
that are imposed by the sinusoidal model are essential to
achieve a sufficiently high quality for the signal separation
phase of the DNA system. The strong activity in the area
of signal separation will certainly continue and deliver new
audio processing tools.

Another topic that will become increasingly important is
research on modeling and transformation of expressive per-



formance. The research presented in [19, 11] is only a first
step. Much more work is required to be able to transform
the signal in a physically coherent manner when modulation
parameters are changed. At IRCAM the Sample Orchestra-
tor 2 research project that will address these questions has
just started.

3.2. Source-Filter model

The source-filter model is another important signal model
that is widely used for signal transformation algorithms. It
has the same origins as the sinusoids plus noise model [32].
In the first application of this model the excitation source
had been represented by either a impulse train parametrized
by the fundamental frequency, or by means of white noise.
In both cases the filter part has been achieved by means of
modulating the energy of the excitation signal in bands of
constant bandwidth (=250Hz). This basic setting is still in
use today. The band wise filtering will in most cases be
replaced by a continuous filter function that is called the
spectral envelope [61, 16].

The source filter model has many applications for sig-
nal transformations. Cross synthesis for example can be
achieved by means of using the excitation signal (source)
from one signal and the resonator (filter) from another.
Other applications are transformations that require indepen-
dent transposition of pitch and formant structure.

3.2.1. Spectral envelope estimation

An important precondition for the source filter model is that
the distinct source and filter parts can be estimated from the
original signal. A short summary of the existing approaches
will be given in the present section.

One of the first techniques that has been used for spec-
tral envelope estimation is linear prediction (LPC) [62].
This method assumes an autoregressive filter function and
has been used especially for speech signals for which the au-
toregressive filter model has a physical justification at least
for some configurations of the vocal tract [61]. A problem
of the LPC estimate is the fact that it is strongly biased if
the excitation spectrum contains sinusoids. This problem
has been addressed in the discrete all pole model [63]. Al-
ternative spectral envelope estimators use the cepstral rep-
resentation to derive the spectral envelope. An early rather
costly and complex method is the discrete cepstrum [64].
Later a more efficient method has been developed [65, 66]
that is using the same envelope representation but makes use
of a rediscovered proposal of an iterative cepstral envelope
estimator [67]. The method is referred to as True Envelope
Estimator. It has proven to provide nearly optimal estimates
given that the spectral envelope can only be observed in a
strongly sub sampled version that is produced by the sinu-
soidal components sampling the filter transfer function [66].
At IRCAM this method has been applied especially in the

context of speech notably for voice conversion [68, 10] and
it has been found to produce very good results.

The estimation of the noise envelopes of the background
noise that is part of a complex sound consisting of sinu-
soidal and noise components is a problem that has received
relatively few interest. The estimation of the sinusoidal pa-
rameters and estimation of the noise level from the residual
is a possible procedure, but if the sinusoidal components
are superimposed as for example in polyphonic music this
procedure will not provide robust results. There exist only a
few methods that allow to establish a background noise esti-
mate for complex polyphonic sounds [69, 48]. As discussed
in section 3.1.1 such method can sometimes be extremely
helpful.

3.2.2. Outlook

One of the main problems of the source filter model that
has been used so far is the assumption that the noise or si-
nusoidal excitation spectrum is white and that the spectral
color is completely provided by the filter. It is rather sim-
ple to demonstrate that this assumption is far away from
the physical reality. The glottal pulse for example, that
is exciting the vocal tract filter during voiced speech, is a
smooth signal and therefore does not have a white spectrum
[70]. The same is true for all musical instruments. Vibrating
chords, e.g., do not produce a white excitation. A number
of recent research projects address the problem to jointly es-
timate the glottal pulse parameters and the vocal tract filter
parameters[71, 72]. Such estimators would allow to estab-
lish a significant step towards a physically correct separa-
tion of source and filter components in speech signals. By
consequence new high level signal transformations become
possible like transformations of voice quality from soft into
tense voice (or the inverse). Because voice quality is partly
determined by the emotional state of the speaker, such trans-
formation operators may help to provide expressive speech
transformations (transforming a neutral voice into an angry
expression).

For music signals one can expect that the possibility to
estimate a physically reasonable non-white sound source
jointly with a corresponding resonator filter opens new pos-
sibilities for a number of applications. With respect to in-
strument recognition one may expect that this kind of phys-
ically more reasonable source filter separation will help to
find consistent instrument features which significantly re-
duced variance [73]. With respect to sound transforma-
tion it can be expected that a physically more reasonable
resonator filter will provide new intuitive means for signal
transformation as for example a modification of the material
of the exciting chords in a given guitar signal. In the Analy-
sis/Synthesis team at IRCAM we have just started to inves-
tigate these new possibilities [74] and we expect a number
of interesting results in the near future.
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