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ABSTRACT

The growing demand for automatic surveillance systems that inte-
grates different types of sensors, including microphones, requires
to adapt and optimize the already studied techniques of Acoustic
Source Localization to meet the constraints imposed by the new
application scenario. In this paper, we present a real-time proto-
type for multiple acoustic sources localization in a far-filed and
free-field environment. The prototype is composed by two linear
arrays and utilizes an innovative approach for the localization of
multiple sources. The algorithm is based on two steps: i) the sep-
aration of the sources by means of beamforming techniques and
ii) the comparison of the power spectrum by means of a spectral
distance measure. The prototype was successfully tested in a real
environment.

1. INTRODUCTION

Acoustic Source Localization (ASL) allows to extract information
about the space location of one or more sources using microphone
arrays and signal processing techniques. The ASL techniques are
applicable in various contexts as, for example, the tracking of the
speaker during a conference [1], the reduction of noise coming
from concurrent sources [2] or the acoustical analysis of a me-
chanical device [3]. Recently, the growing demand for automatic
surveillance systems (networks of video cameras integrated with
other types of sensors) has sparked interest in systems capable of
monitoring the presence and movement of sound sources in pub-
lic places [4]. It is therefore necessary to adapt and optimize the
already studied ASL techniques to meet the constraints imposed
by the new application scenario: i) the far-field condition (it is of-
ten necessary to locate sources at a distance of tens of meters), in
which the acoustic pressure wave can be approximated to a plane
wave; ii) the need to monitor sources that are moving on a two-
dimensional space (the plane of a square, a street or a monitored
park); iii) the need to place sensors on a plane different from that
monitored, in order to avoid damage by pedestrians or vehicles; iv)
the need to have a reduced number of arrays, not to invade the pub-
lic spaces in an excessive way. In fact, whereas in the near-filed

case a linear array of at least three microphones should be suffi-
cient to locate the sources position in a two-dimensional space, in
the far-field case the estimation of the source position is extremely
difficult, if not almost impossible, using a single array: from the
Time Difference Of Arrival (TDOA) among the microphones we
can estimate the Direction Of Arrival (DOA) of the sound, but not
its distance. Therefore, the two-dimensional position of the source
can be estimated using at least two linear arrays, by means of the
triangulation of the DOA estimations (see Figure 4). As our aim is
to test a network configuration with a minimum number of arrays
(see the point iv above), in the next we will refer to a capture sys-
tem composed by only two arrays. This system works efficiently in
the case of a single source, but if there are more than one source,
we have the problem of what are the correct angles to link with
each others (see Figure 4).

In the literature, several works address similar problems us-
ing an approach based on the tracking of the sources: in [5] [6]
[7] by means of a particle filter, also known as sequential Monte
Carlo method, and in [8] [9] by means of the Kalman filter theory.
Methods based on movement tracking can fail in some specific
situations: i) during the initialization phase of the filter, ii) in the
presence of sources with unpredictable trajectory (e.g. in the case
of rapid changes of the velocity vector), iii) when two sources have
intersecting trajectories (see Figure 1).

This article explores a new approach, which can be applied
in a manner complementary to the filter-based methods, enhanc-
ing the performance of the system when the movement tracking is
difficult. Our approach is based on the source separation and the
comparison of similarity among sounds.

Assume thatn sound sources have been identified for each
array, coming fromn different DOAs. Since the localization of
any source in the two-dimensional plane requires the triangulation
of information measured by the two arrays, we must associate each
DOA estimated by the first array with one corresponding to the
same source estimated by the second array. In total we haven2

possible combinations, but we don’t know a-priori which are the
right n pairs. To this end, the sources estimated by each array are
separated by means of beamforming techniques, maximizing the
SNR of the sources and minimizing the interferences and sounds
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coming from other directions. Then, we proceed to compare the
signal coming from all then directions identified by the first array
with those identified by the second one. Finally, among then2

possible pairs, then pairs whose signals have a greater similarity
are selected.

To check the similarity of acoustic sources, we use a method
based on the spectral distance measure, that allow to identify sounds
with the comparison of spectral power in such a way that their dif-
ference spectrum power minimizes an error criterion. We describe
the spectral distance function in Section 4.2.

The rest of this paper is organized as follows: after present-
ing the system architecture in Section 2, we briefly summarize the
adopted algorithm for the Time Delay Estimation in Section 3. In
Section 4 we illustrate how the two-dimensional position of the
source can be evaluated starting from the TDOAs estimated by the
two arrays. Finally, Section 5 illustrates the prototype of the real-
time system and some preliminary experimental results, obtained
in a real-world scenario.

s1

s1

s2

s2

Figure 1:Two sound sources (s1 and s2) with intersecting trajec-
tories. Continuous lines are the real trajectories, dashed lines are
the wrong tracked trajectories.

2. SYSTEM ARCHITECTURE

To solve the problem of multi-source localization in a two dimen-
sional space we propose the logical architecture showed in Figure
2. Basically, it consists of two parallel processing lines, corre-
sponding to the left and right arrays. The first processing step
is the TDOA estimation, based on the measurement of the time
difference between the signals received by different microphones.
We use the Multichannel Cross-Correlation Coefficient (MCCC)
method [10] to calculate the TDOA, because this method allows
to take advantage of the redundant information provided by mul-
tiple sensors. Besides, to improve the resolution of the peaks for
the TDOA estimations and minimize the influence of noise and
interferences, we apply a Phase Transform (PHAT) filter [11], be-
fore calculating MCCC. Processing the TDOA information with
the knowledge of the array geometry and the acoustic environment
(far-field and free-field), we can calculate the DOA of the sound
source. Finally, the two-dimensional coordinates of the source can
be estimated combining the DOAs at the left and right arrays (see
Figure 4). If more than one source is identified, a beamformer and
a spectral distance comparison provide a guide to solve the prob-
lem of associating the DOAs of the left array with those of the
right array. In case of a stationary noisy environments, correlated
among the array microphones, the ASL can be improved by means
of a de-noise task [12].

TDOA estimation

DOA estimation

acoustic

environmental

-

geometry

array

single

source

multiple

sources

Delay & Sum Beamforming

ISP Spectral Distance Comparing

left array

MCCC-PHAT

x, y positionarrays position
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DOA estimation

right array

MCCC-PHAT

Figure 2: The block diagram of the processor, showing the data
flow of all the tasks of the experimental system implementation.

3. TIME DELAY ESTIMATION

3.1. MCCC method

The MCCC algorithm is a spatial correlation-based method. Ac-
cording to [13], we consider a linear array onN (N ≥ 2) micro-
phones. The discrete-time signal received by thenth microphone
in a free-field environment withM multiple sources can be mod-
eled as:

yn[k] =
M∑

m=1

αnmsm[k − tm −̥n(τm)] + vn[k] (1)

whereαnm is the attenuation of the sound propagation (inversely
proportional to the distance from sourcem to microphonen), sm[k]
are the unknown source signals,tm is the propagation time from
the unknown sourcem to the reference sensor,̥n(τm) is the
TDOA of the mth signal between thenth microphone and the
reference,v[k] is an additive noise signal at thenth sensor, which
is assumed to be uncorrelated with not only all the source signals
but also with the noise observed at the other sensors. The func-
tion ̥n(τm) depends on the microphone array geometry. In our
case, for a linear and equispaced arrays, i.e. Uniform Linear Array
(ULA), and for a single source we have:

̥n(τ) = (N − 1)τ, n = 2, . . . , N (2)

If we consider a single source and neglect the noise terms, we have:

yn[k +̥n(τ)] = αns[k − t] (3)

Therefore,y1[k] is aligned withyn[k+̥n(τn)], and the new sig-
nal vector can be written:

y[k, p] =
[
y1[k] y2[k + τ ] . . . yn[k + (N − 1)τ

]T
(4)

wherep is a dummy variable for the hypothesized TDOAτ . The
spatial correlation matrix ofN microphones array is:

R[p] =




σ2
y1

ry1y2 [p] . . . ry1yN [p]
ry2y1 [p] σ2

y2
. . . ry2yN [p]

...
...

. . .
...

ryNy1 [p] ryNy2 [p]
. . . σ2

yN




(5)
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whereσ2
yi

= E[yi]
2 is the variance of signalyi andryiyj [p] is the

cross-correlation betweenyi andyj . The spatial correlation matrix
can be factored as:

R[p] = ΣR̃[p]Σ (6)

where

Σ =




σy1 0 . . . 0)
0 σy2 . . . 0
...

...
. . .

...

0 0
. . . σyN




(7)

and

R̃[p] =




1 ρy1y2 [p] . . . ρy1yN [p]
ρy2y1 [p] 1 . . . ρy2yN [p]

...
...

. . .
...

ρyNy1 [p] ρyNy2 [p] . . . 1


 (8)

is a symmetric matrix, and

ρyiyj [p] =
ryiyj [p]

σyiσyj

(9)

is the Pearson Correlation Coefficient (PCC) between theith and
jth aligned microphone signals. The MCCC algorithm can be used
to estimate the TDOA between the first two microphone signals as:

τ̂MCCC = arg(local)min
p

det[R̃[p]] (10)

3.2. MCCC-PHAT method

In our system we use a filtered cross-correlation function, the Gen-
eralized Cross-Correlation (GCC) [11], the most common tech-
nique employed for TDOA estimation of microphone pairs. The
GCC in the frequency domain is:

rGCC

y1iyj
[p] =

L−1∑

f=0

Ψ[f ]Syiyj [f ]e
j2πpf

L (11)

whereL is the number of samples of the observation time,Ψ[f ] is
the frequency domain weighting function, and the cross-spectrum
of the two signals is defined as:

Syiyj [f ] = E{Yi[f ]Y
∗

j [f ]} (12)

whereYi[f ] andYj [f ] are the Discrete Fourier Transform (DFT)
of the signals and * denotes the complex conjugate. GCC is used
for minimizing the influence of uncorrelated noise and interfer-
ences, and maximizing the peak in correspondence of the time de-
lay. In order to improve their robustness to additive noise, see
[14]. The PHAT weighting function normalizes the amplitude of
the spectral density of the two signals and uses only the phase in-
formation to compute the GCC:

ΨPHAT[f ] =
1

|Syiyj [f ]|
(13)

It is widely acknowledged that GCC is able to provide con-
sistent performance when the characteristics of the source signal
change over time. Thus its performance is dramatically reduced in
case of pseudo-periodic sounds.

Now we can write the new spatial correlation matrix for MCCC-
PHAT:

R
PHAT[p] =




1 rGCC
y1y2

[p] . . . rGCC
y1yN

[p]
rGCC
y2y1

[p] 1 . . . rGCC
y2yN

[p]
...

...
. . .

...

rGCC
yNy1

[p] rGCC
yNy2

[p]
. . . 1




(14)

The TDOA estimation between the first two microphones in the
general case of multiple sources is:

τ̂MCCC−PHAT = arg(local)min
p

det[RPHAT[p]] (15)

4. SOURCES LOCALIZATION

4.1. Single source localization

The location of one sound source depends on the estimation of its
DOA at the microphone arrays. In a far-field condition, the DOA
valueθ can be calculated as:

θ = arcsin
(τc
d

)
(16)

wherec is the speed of sound andd the distance between micro-
phones. The assumed DOA range is: -90◦ +90◦, where zero is
in front of the array, and the microphone reference is the first from
left. As showed in Figure 3, the calculation of the two-dimensional
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Figure 3:Single source localization; x, y axes reference.

position of the source is a simple trigonometric problem. However,
we must consider that the two arrays are not coincident with the
plane of interest, but they are placed at a certain height. Referring
to Figure 3, we have to consider that the possible points identified
by DOA are located on a cone surface, whose vertex is placed in
the array and whose axis is the straight line joining the two arrays.
Every array presents a cone: the intersection of the two cones is
represented by a circumference. The intersection point between
the circumference and the plane of interest is the estimation of the
source distance from arrays. Hence, we considerda the distance
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of the arrays,h the height of arrays above the plane of interest,θr
andθl the DOA estimated on right and left array:

x =
da
2

( tan θl + tan θr
tan θl − tan θr

)
(17)

y =

√( da
tan θl − tan θr

)2

− h2 (18)

4.2. Innovative approach for multiple source localization

In case of multiple sources, the wavefront of each source will ar-
rive at each of the two arrays with a different angle. We have
therefore the problem of how to correctly associate the DOA an-
gles relative to the same source, otherwise we may incur in the
location of false sources (Figure 4), i.e. in a wrong estimate of the
sound sources position.
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Figure 4:The problem of multiple source localization.

To solve this problem, we propose the use of a beamforming
technique to separate sound sources, and the comparison among
the power spectrum of the different sources to determine the more
consistent pairs of angles. Suppose that left and right arrays de-
tect the presence ofM sources, and thenM DOAs are calculated
for each of the two arrays. Steering the beamformer to theseM
directions,M signals can be obtained for each of the arrays. The
power spectrum of each signal calculated from one array is com-
pared with that of theM signals related to the other array. Among
theM2 possibilities are then chosen theM couples with the less
distance between their power spectrum.

The beamforming [15] can be seen as a combination of the de-
layed signals from each microphone in such a way that an expected
pattern of radiation is preferentially observed. The process can
be subdivided in two sub-tasks: synchronization and weight-and-
sum. The synchronization task consists in delaying (or advancing)
each sensor output of an adequate interval of time, so that the sig-
nal components coming from a desired direction are synchronized.
The information required in this step is the TDOA estimation. The
weight-and-sum task consists in weighting the aligned signals and
then adding the results together to form a single output. The output
signal of beamformer allows to enhance a desired signal from its

detection corrupted by noise or competing sources. The Delay &
Sum Beamforming (DSB) is the classical technique for realizing
directional array systems. In general, the DSB outputy is formed
as:

y[k] =
1

N

N∑

n=1

yn[k +̥n(τ)] (19)

and power spectrum output, Incident Signal Power (ISP), of ULA
on the desired direction is:

P [θ, f ] =
∣∣∣

N∑

n=1

Yn[f ]e
−j2πf(n−1)d sin θ

c

∣∣∣
2

(20)

whereN is the number of microphone signals,Yn[f ] is the DFT
of the signal,d is the distance between the microphones,c is the
speed of sound,θ is the DOA of the interesting sound.

The comparison between theM2 couples of ISPs obtained by
beamforming requires the definition of a Spectral Distance Func-
tion (SDF), to be used as error criteria. Among several possibili-
ties (for comparison see [16]), we considered five of the most used
functions (presented below), in order to verify how our system per-
formance varies as a function of SDF.

The first selected function is a simple Spectral Difference (SD):

SD(θl, θr) =
1

L

L−1∑

f=0

(P [θl, f ]− P [θr, f ]) (21)

whereθl andθr are the DOA measured by the left and right arrays.
A classic spectral estimation method is Linear Prediction (LP)

[17], where we insert the minus one to standardize the minimum
to zero as the other SDF:

LP (θl, θr) =
1

L

L−1∑

f=0

( P [θl, f ]

P [θr, f ]
− 1

)
. (22)

The others functions are the Itakura-Saito (IS) distance measure
[18]

IS(θl, θr) =
1

L

L−1∑

f=0

( P [θl, f ]

P [θr, f ]
− log

P [θl, f ]

P [θr, f ]
− 1

)
; (23)

the Root Mean Square (RMS) log [19]

RMS(θl, θr) =
1

L

L−1∑

f=0

(
log

P [θl, f ]

P [θr, f ]

)2

; (24)

and the COSH measure [20]

COSH(θl, θr) =
1

L

L−1∑

f=0

( P [θl, f ]

P [θr, f ]
− log

P [θl, f ]

P [θr, f ]

+
P [θr, f ]

P [θl, f ]
− log

P [θr, f ]

P [θl, f ]
− 2

)
.

(25)

Assuming there areM sources, a list ofM DOAs from each of
the two arrays will be estimated; in particular,θ̄l = [θl1 , ..., θlM ]
andθ̄r = [θr1 , ..., θrM ] are the vector containing the angles deter-
mined from the left and the right array respectively. To locate the
sources is therefore necessary to find, among theM ! possibilities,
the correct combination ofM pairs between elements ofθl and
θr. Let i one of these combinations andi(m) themth pair of the
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combination, we define the Spectral Distance Estimation (SDE)
as the mean value of the SDFs calculated on theM pairs of the
combination.

SDE(i) =
1

M

M∑

m=1

|SDF (i(m))|, (26)

and the vector Spectral Difference Mean Estimation (SDME) as:

SDME =
[
SDE(1) SDE(2) . . . SDE(M !)

]
(27)

Finally, the index of the minimum value of the vectorSDME

identifies the target combination:

î = argmin
index

SDME (28)

5. EXPERIMENTAL RESULTS

To test in a real scenario the algorithms for the multi-sources lo-
calization, we made a prototype that has been installed on the roof
of the building that houses the computer science department in
Udine (see Figure 5). The prototype includes two linear arrays,
each one composed by four microphones. The arrays are located
at a distance of 11.4 m between them and a height of 12.1 m above
the plane. The sample rate of digital system is 48 kHz and the
microphone distance is 25 cm. We use for our experimental the
sound sources of human voice, scream, shot gun, car, bus, horn.
Though the localization is theoretically possible with just two mi-
crophones, more sensors allow ASL to make a quite robust time
delay estimation, using the redundant information coming from
the six TDOAs calculated for each array; in general,N(N − 1)/2
whereN is the number of microphones. Moreover, using only
four microphones in each array, the computational load is not too
high, both for MCCC-PHAT algorithm and DSB, and the proto-
type works in real-time also with an entry level personal computer.
The improvement due to the redundant information coming from
the four microphones can be noticed by comparing Figures 6, 7
and 8. In particular, note Figure 6 that shows the GCC-PHAT cal-
culated for each pair of microphones: M1M2 (GCC-PHAT of mi-
crophone 1 and 2) seem to present two sources, with two peaks,
instead M1M3 has two peaks very close together. This ambiguity
disappears analyzing the minimum peak of the MCCC-PHAT (see
Figure 7), which considers all six combinations between the four
microphones. Finally, Figure 8 shows the comparison among the
MCCC-PHAT calculated with a different number of microphones,
from which we can see that the location of the source is more evi-
dent as the number of microphones increases.

In case of multiple sources, Figure 9 shows the presence of two
peaks for each array related to the DOAs of two sources. The real
sources are positioned with respect to the xy coordinates (-3,30)
and (5,20) in meters. By estimating the position of local minima
we can calculate the TDOAs. In this application scenario the real
sources are found matching anglesθr1θl1 andθr2θl2, otherwise
we fall into the error of false localizing sources (Figure 10). In
Figure 11 we compare ISP of the beamformer output for each DOA
array. It is visible that the proper pair of angles have a similar
power spectrum. Applying the SDF, we get the vectorSDME

reported in Table 1:
All the spectral distance functions minimize the vectorSDME

with the correct angles combination. The limitation of this ap-
proach relates to cases of acoustic sources with a similar spectral

Figure 5: The prototype installed on the roof of the university
building. Inside the circles the two arrays. The microphones are
protected from the weather by a waterproof box.
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Figure 6:Comparing the GCC-PHAT function of all microphone
pairs of array.
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Table 1:SDME of multiple sources referring to Figure 9 (M=2).
Each row represents the SDME calculated using a different dis-
tance function. Each column represents one of the differentM !
angle combinations.

SDF θl1θr1 − θl2θr2 θl1θr2 − θl2θr1
SD 278 1019
LP 0.4 5.4
IS 0.6 5

RMS 7 189
COSH 7 10

content, where it is very difficult to link the angles between arrays
correctly. In Figure 12 it is shown the case of three sources, two of
which have a similar spectral content, a car, located in (-5,47), and
a bus, located in (0,6); the third is a human voice, positioned in
(3,35). In this case, applying the task of identification, we obtain
the ISP for each DOA (Figure 13) and the vectorSDME of the
six possible combinations (Figure 14). The estimated minimum
value of the vectorSDME actually identifies the correct angles
combination, (DOA1l−DOA2r;DOA2l−DOA3r;DOA3l−
DOA1r), but looking at Figure 13 it is well marked the similarity
of human voice ISP and, on the contrary, it is difficult to check the
matching pairs of the other two, so that we could make the mis-
take of locating the sources in a wrong position. We can see, even
in Figure 13, that having index = 2, corresponding to the combina-
tion (DOA1l−DOA1r;DOA2l−DOA3r;DOA3l−DOA3r),
there is a second peak due to the similarity of the two sounds, and
angles (DOA2l − DOA3r) refers to the human voice. In this
example the RMS log is the only spectral function that gives an
incorrect result.

Once the correct DOA pairs are identified, the xy coordinates
can be estimated. Localization resolution depends, regarding the
DOA estimation, on the accurate calculation of cross-correlation,
which is linked to, referring to equation (16), the sampling rate
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Figure 9:MCCC-PHAT algorithm performance with two sources.
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mation of Figure 9: true and false sources.

and the distance between microphones. Of course, this also in-
fluences the minimum resolvable distance between two sources.
It is important to highlight that the distance of the microphones
determines the minimum frequency beyond which spatial aliasing
can occur. It means that a sound, which does not contain spectral
components below the minimum frequency, cannot be uniquely
localized. Instead, the resolution which are calculated the xy co-
ordinates is related also to the distance between the arrays (Figure
15).

6. CONCLUSIONS

We presented a real-time prototype for multiple acoustic sources
localization in a far-filed and free-field environment. The system
is based on two linear arrays and on an innovative algorithm that
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Figure 11: Comparing the ISP on different DOA estimations of
Figure 9.
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Figure 12: MCCC-PHAT algorithm performance with three
sources. Car sound(DOA1l, DOA2r), human voice
(DOA2l, DOA3r) and bus sound(DOA3l, DOA1r).

addresses the problem of multiple sources localization i) separat-
ing the sources by means of a Delay & Sum Beamforming and ii)
comparing the Incident Signal Power of the beamformer output by
means of a spectral distance function. We evaluated the system in
a real scenario, installing the prototype on the roof of the univer-
sity building and analyzing the sound events that happened in the
parking in front of the building. For the moment, we successfully
tested the functionality of the system with two and three sources.
Since the localization algorithm is based on the spectrum distance,
five different distance functions were assessed: all except the Root
Mean Square log have correctly localized the sources both with
two and three events.

Regarding the computational complexity, the algorithm requires
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Figure 13: Comparing the ISP on different DOA estimations of
Figure 12.
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Figure 14: Normalized SDME, comparing the SDF, referring to
Figure 13.

to calculate theM ! elements of the vector Spectral Difference
Mean Estimation, whereM is the number of sound sources. In
reality not all theM2 pairs of angles are geometrically consistent,
but only those that meet the conditionθl > θr. Thus, the vec-
tor will haveM ! elements only in the worst case. Nevertheless,
the order of complexity of the algorithm makes it suitable only
in contexts where the number of sources to be localized is lim-
ited. Alternatively, if the number of sources to localize is high,
the algorithm can be integrated with a traditional tracking system,
based on filtering. In this case, the localization algorithm based on
the comparison of the ISPs would come into action only for those
sources where the tracking system is unable to respond with a suf-
ficient likelihood of success. Another limitation of the proposed
algorithm is the location of sources that have a similar spectral
content. To improve the performance in these cases it is possible
to consider other audio features, as well as the ISP, describing the
evolution over time of the observed signal. This will be one of the
things we address on the continuation of this work.
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