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ABSTRACT

Audio-samplers often require to modify the pitch of recorded sounds
in order to generate scales or chords. This article tackles the use
of Gabor masks and their capacity to improve the perceptual re-
alism of transposed notes obtained through the classical phase-
vocoder algorithm. Gabor masks can be seen as operators that al-
lows the modification of time-dependent spectral content of sounds
by modifying their time-frequency representation. The goal here
is to restore a distribution of energy that is more in line with the
physics of the structure that generated the original sound. The
Gabor mask is elaborated using an estimation of the spectral enve-
lope evolution in the time-frequency plane, and then applied to the
modified Gabor transform. This operation turns the modified Ga-
bor transform into another one which respects the estimated spec-
tral envelope evolution, and therefore leads to a note that is more
perceptually convincing.

1. INTRODUCTION

The aim of this study is to improve the making of digital samplers,
by extending the scale range wherein notes can be extrapolated
from a single recording. With a classical phase-vocoder transposi-
tion, the color of the sound gets perceptually deteriorated as soon
as the transposition range exceeds between 1.5 to 2 tones. Among
the different causes of this phenomena lies the unmodified rela-
tionship between the amplitude and damping of the partials im-
plied by the phase-vocoder algorithm, which is contradictory with
the physics of vibrating structures. Basically, the relative ampli-
tudes of partials is a characteristic of the structure that generated
the sound and the damping coefficient usually increases with fre-
quency, whereas applying the phase-vocoder transposition algo-
rithm results in a simple displacement of the partials along the fre-
quency axis, without any modification of amplitude or damping.
It is shown here that suitable Gabor masks prototypes can be used
in order to restore a distribution of energy that is more in line with
the physics of the sound.

After a review of the theoretical aspects regarding the phase-
vocoder algorithm and the Gabor transform, the result of a tradi-

tional phase-vocoder is compared to a real harmonic sound at the
same pitch. This comparison is made by use of Gabor transforms
and Gabor masks, through which some of the phase-vocoder lim-
itations are highlighted in a next section. These observations jus-
tify the use of ‘mask prototypes’ which applications and results are
presented in the last section.

2. THEORETICAL BACKGROUND

2.1. Gabor transforms and Gabor masks

Most of the mathematical results concerning the Gabor transform
presented here are deeply reviewed in [1]. The theoretical funda-
ments of Gabor masks have been described in [2], and their appli-
cation to audio sounds has already been investigated in [3].

The Gabor transform is a discrete version of the short time
Fourier transform. Considering a signal x(t) and a Gabor frame
f = {g, τ, ν} where g(t) is the time-window and (τ, ν) are the
time-frequency lattice parameters, the analysis operator is defined
as:

Cfx(m,n) = c(m,n) (1)

=

Z +∞

−∞
x(t)e−2iπmνtg(t− nτ)dt

where g is the complex conjugate of g, m is the the discrete fre-
quency index and n the discrete time index. (1) can also be written
in terms of a scalar product of x(t) with the so-called Gabor atoms
MmνTnτg = e2iπmνtg(t− nτ):

Cfx(m,n) = 〈x,MmνTnτg〉L2

where M is the frequency-modulation operator and T is the time-
translation operator.

The synthesis operator is given by:

Dfc(t) =
X
m∈Z

X
n∈Z

c(m,n)MmνTnτg (2)

It is shown in [1] that suitable choices on g, τ and ν imply the rela-
tion x(t) = DfCfx(t), which means that the Gabor transform can
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(a) Gabor transform modulus (b) Fitted spectral envelope evolution

Figure 1: Gabor transform modulus of a real C (65 Hz) ([4]) played at the piano and the spectral envelope evolution fitted with its amplitude
peaks.

be inverted. The modulus of two Gabor transforms are presented
on Figure (2a) and (2d).

Gabor multipliers are operators which modify signals through
a point-wise multiplication on their Gabor transform. Given any
m ∈ `2(Z) named Gabor mask, the associated Gabor multiplier
Mm is defined as:

Mmx(t) = DfmCfx(t)

Given two signals x1 and x2 called respectively the source signal
and the target signal, if those two signals share close supports in
the time-frequency plane (see [3] or [5] for more details), one can
search for a Gabor multiplier which allows to pass from x1 to x2

by minimizing the cost function:

Φ(m) = ‖x2(t)−DfmCfx1(t)‖22 + λ‖m− 1‖22

where the Lagrange parameter λ ∈ R+ is introduced in order to
control the norm of m. It is shown in [3] that under the approxi-
mation that Df is an isometry, such a Gabor mask is given by:

m =
Cfx1Cfx2 + λ

|Cfx1|2 + λ
(3)

As λ increases, the mask values get closer to one; as λ decreases,
(3) becomes more and more equivalent to a point-wise division in
the time-frequency plane. Figure (2c) shows the modulus of the
mask calculated between the two Gabor transforms displayed on
Figure (2d) and (2b).

Thus, knowing two signals, Gabor masks provide an analysis
tool that highlights the differences between their respective Gabor
transforms. But they can also be seen as operators that allow the
transformation of a Gabor transform into another one. However,
their estimation requires the knowledge of both the source and tar-
get signals. In section 4 an a priori Gabor mask amplitude profile
is elaborated (the so-called mask prototype) by only considering
the expected behavior of the target sound.

2.2. The Phase-Vocoder Transposition Algorithm

The phase-vocoder theory is usually presented using the short-time
discrete Fourier transform, but can as well be described using the
Gabor transform formalism such as follows.

The classical phase-vocoder transposition algorithm combines
a re-sampling that brings the original sound to the desired fre-
quency, with the so-called ‘time-scaling’ procedure that brings the
sound back to its original duration. Considering a harmonic signal
x1, ω1 its fundamental frequency, and ω2 the frequency at which
x1 is to be transposed, and defining the ratio r = ω2/ω1, the
phase-vocoder transposition algorithm runs as follows:

1. Re-sampling x̃2(t) = x1(rt)

2. Analysis with the Gabor frame fa = {ga, τa, ν}

c̃2(m,n) = Cfa x̃2(t)

3. Time-scaling by a factor r
This procedure corresponds to a change of Gabor frame.
In the synthesis Gabor frame fs = {gs, τs, ν}, the time-
scale is dilated/compressed, and the frequency scale is un-
changed. So, the new window and time-step are respec-
tively gs = ga(t/r) and τs = rτa. The aim of the time-
scaling procedure is to compute an estimation of the Ga-
bor coefficients c2(m,n) corresponding to the transposed
sound x2(t) at the original tempo. One assumes that the
amplitudes are unchanged, while the phases are modified
according to a so-called horizontal phase-coherence rela-
tionship:

c2(m,n) = |c̃2(m,n)|eiϕc2 (m,n)

For each frequency bin m, un-wrapping the phase of c̃2 al-
lows to estimate an instantaneous frequency ωi which is
used to compute the corrected phase ϕc2(m,n) at time n
as a function of ϕc2(m,n− 1):

ϕc2(m,n) = ϕc2(m,n− 1) + ωi(m,n)rτa

DAFX-2



Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

Since the determination of the phase ϕc2(m,n) is a recur-
sive process, it is necessary to set its value at a certain in-
stant. Here, the original phase has been kept unchanged at
the instant of attack, according to a ‘phase-locking’ proce-
dure (see [6]). Since the considered sounds are recordings
of single notes, they contain only one intensity peak, and
thus no complex peak detection algorithm needs to be used.

4. Inverse Gabor transform with the frame fs:

x2(t) = Dfsc2(m,n)

3. PHASE-VOCODER DRAWBACKS AND LIMITATIONS

3.1. Artefacts

First of all, it is important to note that in general, a modified Ga-
bor transform is not the Gabor transform of any signal. Here,
the estimated Gabor transform c2(m,n) computed with the phase-
vocoder algorithm is generally not the Gabor transform of the syn-
thesized signal Cfsx2(t). This is due to the strict interdependence
conditions between the Gabor transform coefficients of a signal
that belongs to L2(R) (see [7] for details). As a consequence, the
use of c2(m,n) in the reverse Gabor transform process generates
reconstruction artefacts. Other phase-vocoder drawbacks, such as
aliasing, attack smoothing due to loss of vertical phase coherence
have already been deeply reviewed (see for instance [6]).

3.2. Limitations of an exclusive signal processing approach

Although the artefacts named in 3.1 are a complex problem in
the implementation of phase-vocoder algorithms, several improve-
ments have been proposed to overcome them. In the present study
are only taken into account the physical aspects that the pitch-
shifting algorithm doesn’t cover, for it is only based on signal
processing considerations. In fact, an underlying hypothesis be-
hind the phase-vocoder transposition is that the relationship be-
tween the partials (especially in terms of amplitude and damping)
is the same for each pitch. This is obviously not the case for real-
life harmonic sounds produced by physical structures (e.g. mu-
sical instruments). Figures (2d), (2b) provide an illustration of a
typical issue when transposing a note to a higher pitch by use of
the phase-vocoder: the high frequency energy content of the trans-
posed note is much richer than the real one. This phenomena is
one of the causes of the sound-color modification trough phase-
vocoder transposition.

4. GABOR MASK PROTOTYPES

4.1. Elaboration of a Gabor mask prototype using the spectral
envelope evolution

It is proposed to modify the Gabor transform of the transposed
note so that the damping law of the partials remains unchanged.
To do so, a mask prototype is elaborated by computing the ratio
between an estimation of the spectral envelope that the ideal trans-
posed sound should have, and the spectral envelope of the actual
transposed sound. The mask prototype is then applied to the time-
stretched Gabor transform. The protocol is summarized on Figure
(3).

The basic hypothesis of the whole process presented in this
paragraph is to consider that an approximation of a Gabor mask

between two Gabor transforms can be given by the ratio of their re-
spective spectral envelope evolutions. Keeping the same notations
as in section 2.2, and calling c3(m,n) the ideal Gabor transform
of the transposed sound, a mask prototype mp is sought as:

mp(m,n) =
Env{c3}(m,n)

Env{c2}(m,n)
(4)

where Env{} denotes the spectral envelope evolution expressed
in the time-frequency plane. Given a convenient spectral envelope
model, Env{c2}(m,n) can be extracted by observing c2, whereas
Env{c3}(m,n) is to be extrapolated from the spectral envelope
evolution Env{Cfsx1} of the source sound x1(t), for it contains
information on the physical behavior that is wanted to be kept un-
changed through transposition.

In order to compute Env{Cfsx1}(m,n), it is possible to write
the Gabor transform of x1(t) in fs, and then apply a fitting algo-
rithm over the Gabor transform modulus. But it is also possible
to avoid the computational cost of another Gabor transform by us-
ing the specific relationship between the analysis and the synthesis
frame, which allows to write:

Cfs [x1(t)](m,n) = rCfa [x1(rt)](rm, n)

= rCfa [x̃2(t)](rm, n) (5)

Note that the notation rm can be misleading, for rm generally
belongs to R whereas the time and frequency index (m,n) of a
Gabor transform belong to Z2. But in the practical situations con-
sidered here, Cfa [x̃2(t)](rm, n) is never to be computed and this
notation is only a calculus intermediary used to apply a similar
equality to the spectral envelope evolutions. Indeed (5) implies
that:

Env{Cfsx1}(m,n) = rEnv{Cfa x̃2}(rm, n)

= rEnv{c̃2}(rm, n)

And since the time-stretching procedure doesn’t modify the mod-
ulus of the Gabor transform coefficients, one finally has:

Env{Cfsx1}(m,n) = rEnv{c2}(rm, n) (6)

In the following, an explicit model of spectral envelope evolution
is given to Env{}. It is assumed that the energy of the manipulated
sounds presents a log-linear decrease in frequency, an exponential
decrease in time, and that the time-damping coefficient increases
linearly with frequency. These assumptions are coherent with the
free response of oscillating systems (such as the piano) in a linear
approximation. Such hypothesis imply that the spectral envelope
evolution of c2(m,n) can be written has:

Env{c2}(m,n) = keαn+(βn+γ)m (7)

The amplitude parameter k, and the damping parameters α, β, γ
are estimated by use of a least-square method applied over the
peaks of the time-stretched Gabor transform modulus |c2|. α will
be called the time-damping parameter, γ the frequency-damping
parameter, and β the compound-damping parameter. Note that the
estimation of these three damping parameters should logically lead
to negative values. Equation (6) then leads to:

Env{Cfsx1}(m,n) = rkeαn+(rβn+rγ)m

This shows that the transposition process presented on Figure (3)
leads to a Gabor transform c2(m,n) that presents a frequency- and
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(a) Gabor transform modulus of a piano C (65 Hz), [4]
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(b) F (87 Hz) obtained by transposing the C (2a), [8]
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(c) Modulus of the Gabor mask calculated between the F (2d) and the
F obtained by transposing the C (2b)
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(d) Gabor transform modulus of a piano F (87 Hz), [9]
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(e) Mask prototype
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(f) Result of the point-wise multiplication between the transposed F
(2b) and the mask prototype (2e), [10]

Figure 2: Mask prototype (2e) elaborated considering the transposition of a piano C a quart higher, and the result of its application (2f) to
the modified Gabor transform (2b). Magnitude scales are in dB.
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Figure 3: Transposition process
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(a) Gabor transform modulus of a metal sound, [11]
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(b) Transposition of the metal sound a major seventh higher, [12]
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(c) Mask prototype
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(d) Result of the application of the mask prototype, [13]

Figure 4: Mask prototype (4c) elaborated considering the transposition of a metal sound a seventh higher and the result of its application
(4d) to the modified Gabor transform (4b). Magnitude scales are in dB.
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compound-damping behavior modified by a factor r in comparison
to the source sound, and that the temporal damping parameter re-
mains unchanged. Thus the ideal envelope Env{c3}(m,n) can be
set to:

Env{c3}(m,n) = keαn+(rβn+rγ)m

i.e. an envelope that has the amplitude parameter k of Env{c2},
but the damping parameters α, rβ and rγ of Env{Cfsx1}(m,n).
The mask prototype (4) can therefore be written as:

mp = e(βn+γ)(r−1)m

The values of the mask prototype before the attack and below the
fundamental frequency after transposition are set to one.

It is important to note that:

• Such masks only concern amplitude modification, which
means that they leave the phase of the modified Gabor trans-
form unchanged. This is motivated by the fact that a simple
model for phase information cannot be found.

• The model described above will only be used for transpo-
sition to higher tones, i.e with r > 1. Applying this model
to a transposition to lower tones would lead to a diverging
mask prototype as m and n grow. Furthermore, applying
this mask would lead to an amplification of energy on non-
harmonic portions of the time-frequency plane.

4.2. Applications

4.2.1. Piano notes

The method described in section (4.1) has first been applied to
piano sounds. The result of the transposition has been compared
to a real recorded note. Figure (2) provides support for the analysis
of the method for the transposition of a C (65 Hz) a quart higher,
at the frequency of an F (87 Hz). Comparing the Gabor transforms
of the real C and the real F (resp. Figure (2a) and Figure (2d)), one
can see that most of the energy is contained in the same frequency
range, roughly below 3500 Hz. However, the Gabor transform of
the F obtained by transposing the C (Figure (2b)) shows that some
energy is present up to 4600 Hz. Indeed, by listening both F, one
can note that the transposed F sounds more reedy that the natural
one.

Important information can also be retrieved observing the Ga-
bor mask modulus between the real F and the transposed one (Fig-
ure (2c)). First, the highest values of the mask are located along the
frequency channels corresponding to the fundamental frequency
of the F (87 Hz). This is due to the fact that, for the C, the funda-
mental is less energetic than the first harmonic (see Figure (1a)),
whereas for the F, the highest energy is located on the fundamental.
One can also note that the Gabor mask modulus contains values
lower than one between 0 and 4500 Hz at approximately 0.15 s.
This indicates that the real F and the transposed F were not per-
fectly aligned in time. But the main relevant observation for the
present work is that most of the values of the Gabor mask modu-
lus are lower than one, especially from 2000 Hz onwards. This is
coherent with the observation of the two Gabor transforms made
in the previous paragraph, and provides an empirical justification
for the mask prototypes presented in this paper.

The mask prototype presented on Figure (2e) is elaborated by
fitting the amplitude-peaks of the Gabor transform modulus of the
transposed F presented on Figure (2c). As expected, the mask val-
ues get smaller as frequency and time grow, and its application to

the Gabor transform of the transposed F (Figure (2f)) diminishes
the energy at high frequencies. The resulting sound files are avail-
able at www.lma.cnrs-mrs.fr/~kronland/DAFx10/. One can note that
although the ‘masked’ note is more perceptually convincing than
the directly transposed one, it lacks some low frequency content
that is present in the real F. This is probably due to the fact that the
C has a low energy on the fundamental, which was already men-
tioned above. This characteristic is not compatible with the spec-
tral envelope model used to elaborate the mask prototype. This
example allows to point out the benefits of the method as well as
its limitations: the mask prototypes can only be used to erase an
excess of energy in the time-frequency plane, but cannot correct a
lack of energy.

4.2.2. Metal sound

The method described above is not only suitable for notes obtained
with a musical instrument. It can also be applied to any sound
for which the damping model is consistent. In the following, the
transposition of a sound obtained by impacting a metal plate with
a drumstick is considered. Although the resulting sound is not har-
monic, a pseudo chromatic scale can be obtained by use of the
transposition algorithm. The several Gabor transform modulus in-
volved in the transposition of this metal sound a major seventh
higher are presented on Figure (4). On Figure (4a), one can ob-
serve that the original sound contains a high concentration of par-
tials up to 8500 Hz. After transposition, these partials are displaced
up to 17000 Hz, which significantly changes the sound color. The
Gabor transform on Figure (4d), obtained with the mask proto-
type displayed on Figure (4c), exhibits an energy distribution that
is much more coherent with the source sound. The corresponding
audio files are available at [11], [12] and [13].

5. CONCLUSION AND PERSPECTIVES

It has been shown here that a presumption on the physical model
that describes the transposed sounds can be efficiently used to im-
prove the realism of the phase-vocoder transposition, by use of
Gabor mask prototypes.

The spectral envelope estimation being based on a peak de-
tection algorithm and a fitting algorithm, it is necessary, in order
to compute it, to set the value of several parameters such as the
minimal amplitude of the peaks or their maximal thickness. These
choices are of importance for they influence the shape of the mask
prototype, and consequently the color of the resulting sound. A
deep investigation on the influence of the underlying algorithms
parameters over the resulting sound color would provide more sta-
bility to the transposition algorithm, as well as more flexibility.

For more complex sounds, which spectral envelope evolution
can not be described by the model (7) used in this paper, a more
sophisticated spectral-envelope model could be developed. This
again, would allow to use the transposition algorithm in a wider
range of situations.
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