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ABSTRACT

This paper presents a method to detect and distinguish single and
multiple audio effects in monophonic electric guitar recordings.
It is based on spectral analysis of audio segments located in the
sustain part of guitar tones. Overall, 541 spectral, cepstral and har-
monic features are extracted from short time spectra of the audio
segments. Support Vector Machines are used in combination with
feature selection and transform techniques for automatic classifi-
cation based on the extracted feature vectors. A novel database
that consists of approx. 50000 guitar tones was assembled for the
purpose of evaluation. Classification accuracy reached 99.2% for
the detection and distinction of arbitrary combinations of six fre-
quently used audio effects.

1. INTRODUCTION

Semantic music analysis is an active research topic, which aims
to retrieve meaningful structural information about music data di-
rectly from the audio signal. This content-based meta data can
be used for a variety of applications, including similarity-based
music search and recommendation, interactive music games and
enhanced music production tools. The utilized descriptors often
focus on characterizing melodic, harmonic and rhythmic proper-
ties of musical pieces as well as their instrumentation. While this
may be sufficient to characterize classical music, it misses one im-
portant facet of modern popular music: the usage of audio effects
to alter the sound of single instruments and also effects processing
of complete mixtures to put the finishing touch to them. Hence,
effects processing can be considered an additional dimension of
musical expression. It offers a broad range of possibilities, from
subtle sound shaping to the creation of completely new sounds by
feeding the instrument signal through a number of effects, each of
them inducing a certain change to the sound. The electric guitar,
which has been subject to effects processing for several decades
now, has a special role in this context. In modern popular mu-
sic it is often used as both lead and accompanying instrument and
there are more than a few guitar players, whose signature sound is
based on the usage of certain audio effects and their combination
in particular.

Regarding semantic music analysis, we assume that existing
techniques will benefit from the knowledge about the presence of
audio effects applied to guitar sounds: Automatic music transcrip-
tion systems will most likely fail in automatically transcribing the
rhythm or pitch of a melody that has been heavily processed with
delay or modulation effects. Using the a priori knowledge about
the presence of these effects, one can try to remove them from the
signal in a prior processing step or post process the error-prone

output appropriately. In this paper, we show that automatic clas-
sification with Support Vector Machines based on extracted audio
features provides a suitable approach for automatic detection of
both single audio effects as well as multiple audio effects applied
to guitar tones. Multiple effects in this context relates to cascaded
single effects in the signal chain that alter the signal consecutively.

The remainder of this paper is organized as follows: After pro-
viding an overview of related work in Sec. 2, we present the indi-
vidual processing stages of our approach in Sec. 3, introducing a
novel audio feature extraction concept based on harmonic analysis
of instrument sounds. In Sec. 4, we explain the performed exper-
iments and discuss the obtained results. Finally, Sec. 5 concludes
this work.

2. RELATED WORK

Audio effects are a multi-faceted research topic and various studies
addressed topics such as the technical principles of audio effects
and how these affect sound quality, emulation of analog circuitry
behavior using digital signal processing or adaptive audio effects
[1, 2, 3, 4]. However, in semantic music analysis they are scarcely
addressed. Classification of musical instrument sounds is mainly
performed on a level of instrument types or families, neglecting
most of the timbral variations that can occur within the scope of
a single instrument’s sound, e.g. induced by playing styles or the
usage of audio effects [5, 6]. One recent study investigated the
detection of audio effects in recordings of electric guitar and bass
but limited its scope to single effects [7]. We aim at extending
this method to the detection of multiple audio effects applied to
guitar sounds, which can be regarded a multi-label classification
task, since a sound can be assigned a number of labels according
to the number of effects applied to it [8]. The concept of multi-
label classification has already been applied to a variety of tasks,
including music genre classification and mood estimation [9, 10].

3. PROPOSED APPROACH

Within the great variety of different audio effects, a few of them
can be considered as de facto standards for guitar sound shap-
ing. In popular music, frequently used audio effects for sound
processing comprise: Nonlinear Processing (NLP), Modulation
(MOD) and Ambience (AMB) effects. Audio effects belonging to
these three effect groups will be featured in almost every available
multi effects device or in arrangements of single effects devices.
For the experiments described in this paper, we chose two widely
used audio effects from each group. These are: Distortion (DIS),
Overdrive (OVD), Chorus (CHO), Flanger (FLA), Feedback De-
lay (FBD) and Reverb (REV). [1] provides detailed descriptions of
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Figure 1: Schematic representation of a multi effects device con-
taining the six audio effects investigated in this paper, grouped in
three subsequent sections. In the depicted setup, two effects are
activated (DIS and REV) while the modulation effects section is
bypassed .

these and other audio effects. Although there exists no strict rule
regarding the order of effects in the signal chain, most setups will
feature an order comparable to that depicted in Figure 1. A po-
tential user can choose to either activate a single effect or cascade
effects of the different effect sections to achieve more complex
sound alterations.

3.1. General Structure

The method we propose is based on spectral analysis of audio seg-
ments located in the sustain part of guitar tones, because they can
be regarded as having a stable harmonic structure with only mi-
nor amplitude changes. The majority of audio effects has a time-
varying behavior. By only investigating the sustain part and ne-
glecting the attack part at the same time, we expect the extracted
features to be invariant to the instrument sound to a certain extent.
Thus, we assume that the detected sound variations correspond
directly to the audio effects applied to the signal. The proposed
method consists of four stages: preprocessing, feature extraction,
feature reduction and classification, which will be described in the
following sections.

3.2. Preprocessing

Preprocessing aims to identify the starting time of the sustain part
of a guitar tone. We compute the energy envelope of the tone and
obtain an initial estimation of the end of the attack part with the
fixed threshold method described in [11]. The actual transition
between attack and sustain part of the tone is marked by the next
local maximum of the envelope. To ensure that the audio segment
used for feature extraction will be fully located in the sustain part,
we determine its starting time behind the detected maximum.

3.3. Feature Extraction

An audio segment is first transformed into successive short time
spectra using frames of 8192 samples, a hopsize of 512 samples
and a Hann window at a sampling rate of 44.1 kHz. From these
we extract a set of spectral, cepstral and harmonic features that has
been recently employed for the detection of single audio effects
[7]. Hence, only a brief overview of the feature extraction will be
given in the following sections. The resulting feature vector has a
total of 541 dimensions.

3.3.1. Spectral Features

The following features are extracted frame-wise from the magni-
tude spectrogram: spectral centroid, spread, skewness and kurto-
sis, spectral flux, roll-off, slope and flatness measure [11, 12]. In
addition, we calculate their first and second derivatives and apply
highpass filtering to spectral centroid, roll-off and slope. To char-
acterize the value range of the features, we use mean value and
standard deviation. To capture their temporal progression, we cal-
culate first four sample moments (namely mean value, variance,
skewness and kurtosis) for each feature.

3.3.2. Cepstral Features

We apply the discrete cosine transform to the logarithmized, squared
magnitude spectra to convert the spectral frames to cepstral frames
and use the first ten coefficients, averaged over the whole segment,
for feature extraction. These will contribute directly to the final
feature vector along with their maximum value. In addition, we
compute mean value and standard deviation of the element-wise
differences as well as the summed-up differences from the linear
interpolated slope of the coefficients. We apply the same proce-
dure to the standard deviations of the coefficients and repeat it for
the first and second derivatives.

3.3.3. Harmonic Features

First, we estimate the fundamental frequency in every frame of
the audio segment using autocorrelation and take the mode of all
frames to obtain a more reliable estimation. Afterwards we deter-
mine the frequencies of individual harmonics by searching for the
frequency bins with the highest magnitude in local ranges around
integer multiples of the fundamental frequencies. This is neces-
sary to account for inharmonicity, that is frequency deviations of
the harmonics caused by the stiffness of the strings [13]. To re-
veal time-varying changes of the harmonics’ frequencies, levels
and shapes caused by the applied audio effect, they will not be
represented by one single frequency bin but a narrow frequency
band. Given the average frequency fi of the i-th harmonic and a
bandwidth ∆k, we extract the following Harmonic Feature Curves
H∗

i from the logarithmized, squared magnitude spectrogram XdB

of the audio segment:

Hmax
i (m) = max (XdB(m,k)) (1)

Hpos
i (m) = arg max (XdB(m,k)) (2)

Hen
i (m) = XdB(m,k) (3)

k = fi −∆k, . . . , fi + ∆k, ∆k < f0/2 (4)

where m denotes the frame index, Hmax
i the harmonic feature

curve related to the maximum value, Hpos
i the harmonic feature

curve related to the maximum position and Hen
i the harmonic fea-

ture curve related to the band energy of the i-th harmonic. k is a
vector containing the frequency bin indices of the current analysis
frequency band.

To derive figures that capture the sound alterations induced by
the audio effects we perform short time spectral analysis on the
harmonic feature curves of the first ten harmonics. From the re-
sulting magnitude spectrograms we consider only the frequency
range 0 . . . 22 Hz for analysis since this will contain the major-
ity of low frequency modulations and variations. To characterize
the spectral shape of the spectrograms, we extract the following
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features frame-wise: mean value, variance and standard deviation,
maximum value and position, spectral centroid, spread, skewness
and kurtosis as well as the steady and the cumulated alternating
component and their ratio. 72 figures per harmonic are derived
by calculating mean value and standard deviation of the extracted
features to characterize their value range.

To reduce the huge number of resulting figures we apply two
grouping schemes. First, we average the figures over all harmon-
ics. Secondly, we perform a tristimulus-like grouping driven by
the concept, that the higher the order of the harmonics, they will
be perceived rather as a group than as individual harmonics [12].
Figures related to the first harmonic remain unchanged, but we av-
erage the figures of the second to fourth as well as the figures of
the fifth to tenth harmonic, thereby preserving valuable structural
information.

Besides the spectral analysis of the harmonic feature curves,
we also analyze the temporal progression of the harmonics’ lev-
els using the harmonic feature curves related to the band energy
Hen

i (see Eq. 3). For unprocessed tones the levels will be de-
creasing slowly because the guitar string is performing a damped
oscillation while the usage of audio effects can break this rule. We
model an ideal progression of the harmonics’ levels using linear
regression of the band energy levels and compute the frame-wise
differences to the real values for the first ten harmonics. Since we
use a logarithmized spectrogram, a linear slope here corresponds
to exponential decay in the linear amplitude domain, which is a
reasonable assumption for guitar tones. We then calculate mean
values and standard deviations of the differences and the absolute
valued differences and apply the same grouping of figures as for
the spectral analysis of harmonics. Furthermore, we calculate the
ratio between the amounts of positive and negative valued differ-
ences and use statistical figures to evaluate the distribution of this
ratio over the harmonics.

3.4. Feature Reduction and Classification

The raw extracted features can already be used for classification
but there might be correlated, redundant or irrelevant features.
Hence, we insert a feature reduction stage in front of the classifica-
tion stage. We use two algorithms which aim two identify an opti-
mized subset of features - namely Inertia Ratio Maximization us-
ing Feature Space Projection (IRM) [14] and Linear Discriminant
Analysis (LDA) [15]. The former performs an iterative feature se-
lection based on maximization of the ratio of between-class inertia
to the total-class inertia. The latter linearly maps the feature vec-
tors into a new, smaller feature space, guaranteeing a maximal lin-
ear separability by maximization of the ratio of between-class vari-
ance to the within-class variance. As classifier, we use renowned
Support Vector Machines (SVM) with a radial basis function ker-
nel (RBF). More details on these methods can be found in [16].

There exist various strategies for classification of multi-label
data. We utilize a method described in [8] that transforms the
multi-label classification problem into one single-label classifica-
tion problem by considering each different combination of single
labels that exists in the data set as a single label. Table 1 illus-
trates this transformation for two effects. The main benefit of this
approach is, that one only has to train one single-label classifier
on the transformed data, whose predicted labels can be evaluated
directly.

Item DIS CHO It. DIS CHO DIS & CHO
1 x 1 x
2 x =⇒ 2 x
3 x x 3 x

Table 1: Example of transforming multi-label data to single-label
data using the example of two effects and their combination.

4. EXPERIMENTS AND RESULTS

4.1. Database

We used a database of recorded single guitar tones that were pro-
cessed with different audio effects afterwards. Unprocessed tones
as well as those processed with one single effect were taken from
the IDMT SMT Audio Effects database, which is intended to be a
public benchmark set for such tasks1. We extended this data set by
processing the recorded tones with every of the 20 possible com-
bination of two or three cascaded effects according to the setup
depicted in Figure 1, which allows for 27 different effect combi-
nations. Thereby, we used the same effect devices and settings as
have been used for single effect processing to ensure that the dis-
tinction between multiple effects and the associated single effects
will not be misleaded by differing effect parameter values. Fur-
thermore, this resembles the performance of a real guitar player,
who simply activates or deactives effects, most commonly with a
foot control, without changing their settings, e.g. adding a bit of
reverb to an already distorted guitar sound. We intend to extend
the existing database with the newly created sounds2. In total, the
database used for evaluation consists of 50544 tones, 1872 for each
of the 27 possible effect combinations.

4.2. Experimental Setup

We evaluated the performance of the proposed approach with two
experiments, which investigate how well single and multiple ef-
fects can be detected and distinguished from each other. In the
first experiment we used the single effect labels, i.e. DIS, CHO,
etc. as distinguishing criterion, whereas in the second one we used
the effect group labels, i.e. NLP, MOD, etc. Accordingly, the two
experiments were performed with 27 and 8 classes, respectively,
always including the unprocessed samples as an additional class.
For feature reduction we applied IRM with and without subsequent
LDA as well as LDA solely. The number of features to be selected
by the IRM algorithm was varied between 40 and 200 with a step
size of 40 and the number of feature dimensions after LDA trans-
form was set to 26 or 7. Regarding the SVM classifier, we varied
the kernel parameter γ of the RBF kernel between 2−12 and 24

and the cost parameter C between 2−4 and 212 on a logarithmic
scale. We randomly subdivided the database into train (75%) and
test set (25%) and performed five-fold cross validation on the train
set first to tune the parameters of feature reduction and classifier.

4.3. Results

Table 2 gives an overview of the results of the two experiments,
depicting the best result obtained for each setup of the feature re-
duction stage. As shown there, the best mean classification accu-

1See http://www.idmt.fraunhofer.de/eng/business%20areas/smt_audio_effects.htm
for further information.

2For further information please contact the author via email.
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Figure 2: Confusion matrix [%] for the prediction of single and
multiple effects on the effect group level. Mean classification ac-
curacy is 98.1% and applied feature reduction is IRM with 160
features selected.

Effects Effect Groups
Feature Reduction Result Feature Reduction Result
IRM 200 99.2 IRM 160 98.1
IRM 40 + LDA 97.4 IRM 200 + LDA 94.4
LDA 96.8 LDA 95.0

Table 2: Mean classification accuracies [%] of the two experiments
for different setups of the feature reduction stage.

racy for the detection and distinction of single and multiple effects
of 99.2% has been achieved by applying only IRM to the data.
Applying LDA slightly decreases the results. The results for clas-
sification on the effect group level show a similar tendency. The
best result of 98.1% was again achieved by applying only IRM to
the data while applying LDA degraded the results once again. The
complete confusion matrix for the best result of the second exper-
iment is depicted in Figure 2. It shows that the majority of scatter
results from incomplete detections of combinations of multiple ef-
fect , most notable for the combination of all three effect groups.

5. CONCLUSIONS

In this paper we presented a machine learning approach for si-
multaneous detection and distinction of single and multiple audio
effects in monophonic electric guitar recordings. We showed that
a method, designed for the detection of single audio effects, could
successfully be adapted to detect and distinguish arbitrary combi-
nations of up to three audio effects. A novel database of isolated
guitar tones was assembled for evaluation purpose. It is intended
as an open benchmark for the given and related tasks. The obtained
results indicate that the proposed approach might be a valuable en-
hancement for existing music analysis systems. Future steps will
focus on modifying the proposed method with regard to detection
of single and multiple effects with a priori knowledge of single
effects only, to improve its scalability.
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