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ABSTRACT

In this paper, a method is presented for modeling string instrument
bodies. The crucial point of the method is a two-step filtering tech-
nique which combines advantages of both finite impulse response
(FIR) filter design and autoregressive (AR) modeling. The fre-
quency sampling method for FIR filter design enables modeling of
specific resonance constellations within the magnitude spectrum,
whereas a subsequent all-pole modeling step reduces the filter or-
der. In addition, frequency warping is applied in order to further
decrease the model complexity. The proposed method allows for
highly-detailed modifications of individual resonances without af-
fecting other resonances. An example for modifying a virtual vio-
lin body is presented as well as the implementation on a real-time
platform which allows for experiments on perceived violin sound
and musician-instrument interaction.

1. INTRODUCTION

The properties of a string instrument body are crucial for the qual-
ity of the instrument [1], [2]. The complex structure of resonances
influences perceived timbre as well as specific directional radiation
properties and reverberation characteristics [3], [4], [5], [6]. The
body can approximately be considered as a linear time-invariant
system and thus can be described by its impulse response. Usu-
ally, body impulse responses of string instruments are measured
by exciting the instrument with dampened strings by an impulse
or maximum length signal at the side of the bridge, e.g. in [3], [7],
[8]. Fig. 1 shows a typical violin body impulse response. Fig. 2
shows the corresponding magnitude frequency response which, in
this context, is referred to as the resonance profile.
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Figure 1: Body impulse response of a violin.
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Figure 2: Magnitude frequency response (‘resonance profile’) of a
violin body.

Modeling string instrument bodies is a frequently approached
task. Previous studies have shown different methods to model res-
onance bodies, e.g. with electronic filter circuits [9] or digital
filters [3], [10], [11], [12]. Most of the approaches concentrate
either on computationally efficient modeling or on parameteriz-
ability, i.e. the ability to (virtually) modify instrument properties.
Other works take into account the natural reverberation character-
istics of a body [6], [13]. Also, warping techniques are used to
match the frequency scale to the human auditory frequency reso-
lution [6], [14]. Frequency warping reduces the high filter order
which is required to accurately model the psychoacoustically im-
portant low-frequency resonances, e.g. the Helmholtz resonance
or the main wood resonances.

This paper aims at extending state of the art body modeling
approaches by a two-step filtering method which combines real-
istic sound properties with high parameterizability. The proposed
method has been chosen with particular emphasis on the ability
to intuitively modify body properties with high resolution on the
basis of the magnitude frequency response. Using FIR filter de-
sign as well as autoregressive modeling and the above mentioned
frequency warping technique, the method allows for simulating of
specific resonance arrangements at lowest processing latency. In
the context of this research project the authors aim to infer sound
properties of violins from a real-time platform which consists of a
silent violin and a virtual body synthesizer [15].

The paper is structured as follows: In Sec. 2, the filtering
technique for modeling and modifying the body is described in
detail. As an example, in Sec. 2.3, the technique is applied for
modifying a violin resonance profile. Finally, in Sec. 3, a real-time
implementation using MATLAB in combination with an external
processor will be described briefly.
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2. BODY IMPULSE RESPONSE MODELING USING FIR
AND ALL-POLE FILTERS

It is evident that the most realistic sounding method to capture
the complex resonance and reverberation characteristics of a string
instrument is to make use of its original impulse response. The
latter can serve as a starting point for further manipulations which,
in turn, can be realized with digital filters. Due to the length of
an impulse response (e.g. violin body: about 50 – 100 ms), this
method causes a higher computational burden than synthesizing
the whole body. However, in times of increased processor power
this is well feasible (see also Sec. 3).

Concerning the specific application in this work, the filter tech-
nique has to fulfil two main requirements: (i) high resolution for
modeling the low-frequency body modes and (ii) the possibility to
define the desired filter response directly within the resonance pro-
file. FIR filters, indeed, allow for direct frequency domain design
but at the same time require a high filter order for a given accuracy.
Due to the constant group delay of linear phase filters, this fact re-
sults in a perceptible latency which is non-acceptable in case of
virtual musical instruments. Even an order of N = 4096 results
in a group delay of 46 ms (fs = 44.1 kHz) which is clearly no-
ticeable by musicians. Using infinite impulse response (IIR) filters
instead, leads to stability problems in case of direct frequency de-
sign and therefore is not practicable for high orders. Using stable
parametric peak filters is problematic, too: Band interactions of
the peak filters result in frequency response errors which have to
be compensated for by computationally more expensive optimiza-
tion algorithms [15].

The alternative solution which is presented here is based on the
following two-step procedure (Sec. 2.1): First, the coefficients of
a linear-phase FIR filter are computed by applying the frequency
sampling method. Here, the filter order can be arbitrarily high in
order to model the low-frequency modes with a desired resolution
(e.g. N = 8000). In a second step, the coefficients of an AR
model are estimated from the FIR filter coefficients using the Yule-
Walker method. In doing so, the advantages of recursive and non-
recursive filter design are combined: Due to the linear phase of the
FIR filter, the frequency sampling method allows for modifications
within the magnitude frequency response, whereas the AR model-
ing reduces the filter order and, at the same time, avoids a sym-
metric impulse response. Additionally applied frequency warping
further reduces the filter order (Sec. 2.2).

2.1. Frequency Sampling and AR Modeling

In the present work, the resonance profile is modified by means
of an arbitrary number of newly defined frequency samples within
a magnitude spectrum plot (see also Sec. 3). The desired reso-
nance profile

∣∣Hd (ejΩ)∣∣ is computed afterwards using linear in-
terpolation of the new frequency samples. Sampling the resonance
profile at uniformly spaced frequency points leads to the complex
frequency response

Hd
(
ejΩk

)
=
∣∣∣Hd (ejΩk

)∣∣∣ · e−jNF−1
2

Ωk , (1)

with the frequency points Ωk = 2πk
NF

and the frequency index
k = 0, 1, ..., NF − 1. NF is the filter order. The linear phase

is computed with [16]
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NF
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− 1. (4)

The symmetric impulse response of the FIR filter is obtained after
applying an NF -point inverse DFT:

hd (n) = IDFT
{
Hd
(
ejΩk

)}
(5)

=
1

N

NF−1∑
k=0

Hd
(
ejΩk

)
· ej(2πn/NF )·k. (6)

In the second step, the parameters of an AR model are com-
puted. In general, an AR model is an infinite impulse response
filter which forms a white noise input signal to have similar spec-
tral properties as a given signal [17]. In this case, the latter is the
impulse response hd(n) of the FIR filter (Fig. 3).
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Figure 3: Autoregressive model which forms a white noise input
signal to have similar spectral properties as the FIR filter used for
resonance modifications.

The difference equation of the pth-order AR model can be
written as

hd(n) = q(n)−
p∑
i=1

ai · hd(n− i), (7)

where hd(n) is the output signal of the model, q(n) is the white
noise signal and ai are the model parameters. The transfer function
is given by

HAR(z) =
1

1 +
p∑
i=1

ai · z−i
. (8)

Here, the Yule-Walker method (autocorrelation method) is used
to determine the model parameters [17]. The autocorrelation se-
quence of the finite duration signal hd (length NF ) is defined as

rh (m) =
1

NF
·
NF−1∑
n=0

hd (n−m) · hd (n). (9)

After setting (7) in (9) and considering the special spectral proper-
ties of the white noise source, the autocorrelation sequence can be
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written as

rh (m) =


σ2
Q −

p∑
i=1

ai · rh (i) ; m = 0

−
p∑
i=1

ai · rh (m− i) ; m > 0

, (10)

where σ2
Q is the variance of the white noise. With the autocorrela-

tion matrix

Rh =


rh (0) rh (−1) · · · rh (−p)
rh (1) rh (0) . . . rh (−p+ 1)

...
...

. . .
...

rh (p) rh (p− 1) . . . rh (0)

 , (11)

the autocorrelation vector

rh = [rh (0) , rh (1) , rh (2) , · · · , rh (p)]T , (12)

and the parameter vector

a = [1, a1, a2, · · · , ap]T , (13)

(10) can be described as the linear matrix equation (Yule-Walker
equation)

a = −Rh
−1rh. (14)

Due to the Hermitian Toeplitz form of the autocorrelation ma-
trix, the inversion in (14) can efficiently be done by means of
the Levinson-Durbin recursion. Since the algorithm is described
in many publications, e.g. in [17], details are omitted here. The
solution of (14) leads to the set of model parameters, i.e. the co-
efficients of a stable all-pole system. The magnitude frequency
response of the system approximates the desired resonance pro-
file: ∣∣∣HAR (ejΩ)∣∣∣ ≈ ∣∣∣Hd (ejΩ)∣∣∣ . (15)

The precision of the approximation depends on the number of AR
parameters p as well as on the FIR filter order NF . It is obvious,
that a small NF results in a spectral smoothness which can not be
compensated for by the AR model. In the present case, it turned
out, that NF and p have to be at least 8000 and 1500, respectively,
for resulting in an adequate accuracy regarding the low-frequency
body modes. Fig. 4 shows the resonance profile of an original
violin body impulse response, the magnitude spectrum of the FIR
filter (NF = 8000), and the magnitude spectrum of the all-pole
model (p = 1500). Since the order of the resulting all-pole model
is still very high, frequency warping is applied. This is described
in the following section.

2.2. Frequency Warping

As mentioned above, the order of the AR model can further be
reduced by using frequency warping. Frequency warping allows
a non-uniform frequency resolution which corresponds to the hu-
man auditory system [14], [18]. The warped frequency axis is
computed with the all-pass phase function

θ (Ω) = arctan

(
1− λ2

)
· sin (Ω)

(1 + λ2) cos (Ω)− 2λ
, (16)

where λ is the warping Parameter (Laguerre Parameter) and Ω =
2πf/fS . With λ = 0.75, the frequency axis is mapped to the
auditory Bark scale (Fig. 5).
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Figure 4: From top down, separated with 30 dB offset: Origi-
nal violin resonance profile, magnitude spectrum of the high-order
FIR filter (order NF = 8000), and magnitude spectrum of the cor-
responding high-order AR model (order p = 1500).
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Figure 5: Frequency scales: linear (dotted), Bark (Zwicker &
Fastl, gray, dashed), and warped (λ = 0.75, black, solid).

Using a warped frequency scale, the above described filter
technique has to be slightly modified. Now, the desired magnitude
frequency response |Hd(ejΩ)| is sampled on the warped scale in-
stead of the equally spaced grid:

Hd
(
ejΩk

)
→ H ′d

(
ejΩ
′
k

)
, (17)

with Ω′k = θ
(

2πk
NF T

)
· T , k = 0, 1, ..., NF − 1 and T = 1/fS .

The parameters of the AR model are estimated as described in Sec.
2.1, but now, the autocorrelation sequence of the ‘warped’ FIR
filter impulse response is used. This leads to the transfer function
H̄AR(z). With the bilinear transformation [14]

z̄−1 → z−1 =
z−1 + λ

1 + λz−1
(18)

applied to H̄AR(z) with h̄AR(n) = Z−1
{
H̄AR(z)

}
, the de-

warped model transfer function is given by

HAR(z) =

L−1∑
n=0

h̄AR(n) · z̄−n. (19)

L is the length of the impulse response h̄AR(n). Directly imple-
menting the dewarped all-pole filter yields to delay-free recursive
loops. To avoid this, a modified filter structure is used which is
described in [19]. Frequency warping reduces the filter order by
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a factor of about 6 − 10. Fig. 6 shows the spectrum of the orig-
inal impulse response in comparison with an AR model which is
computed with frequency warping (p = 250).

1k500 2k 5k

-100

-80

-60

-40

f / Hz

dB

Figure 6: Top: Spectrum of an AR model (order p = 1500) without
frequency warping. Bottom (–30 dB): Spectrum of an AR model
which is computed with frequency warping (order p = 250).

2.3. Application Example

There are two options for applying the above described filter tech-
nique to an instrument body model (Fig. 7): a) The body is com-
pletely synthesized by an AR model. The desired resonance mod-
ifications are defined within the magnitude frequency response of
the model. Frequency sampling leads to the FIR filter impulse
response, afterwards, the new AR model is generated. b) The
original body impulse response serves as starting point, changes
are done in the resonance profile and afterwards, the difference of
both, the original and the desired new spectrum (in dB) is com-
puted. The resulting difference spectrum is the desired magni-
tude spectrum

∣∣Hd (ejΩ)∣∣ of the modification filter. The filter is
realized with the proposed two-step procedure and subsequently
applied to the body impulse response. Method b) largely main-
tains the natural reverberant properties of a body apart from the
frequency range which has been modified. The disadvantage of
method b) has already been mentioned above: The realistic sound
properties are obtained at the expense of computational cost which
increases due to the length of the original body impulse response.
Hence, in the present work, the filtering process is outsourced us-
ing an external signal processor (Sec. 3).

Both methods a) and b) allow for arbitrary modifications of in-
dividual resonances or complete resonance areas without affecting
other resonances. Modifications can be boosting, cutting, shift-
ing, broadening, generating of new resonances, etc. An example is
shown in Fig. 8: modifications of a violin resonance profile in the
range of the main corpus resonances (at about 450 - 550 Hz). This
frequency range significantly affects the behaviour of the funda-
mental frequencies and therefore influences playability. The origi-
nal resonance profile is shown as well as the desired new resonance
profile which has been drawn within a graphical user interface (see
Sec. 3). The AR model approximation (order p = 250) and the
spectrum of the body impulse response modified with method b)
are also shown. The modified impulse response in comparison to
the original impulse response is shown in Fig. 9. Fig. 10 shows
the difference spectrum, i.e. the desired frequency response of the
modification filter, the magnitude frequency response of the corre-
sponding all-pole filter, and its frequency-dependent error.
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Figure 7: The two body modeling options (see description in the
text): a) The virtual instrument body is completely realized by
an AR model which approximates the desired resonance profile∣∣Hd (ejΩ)∣∣. b) The difference spectrum between the desired res-
onance profile and the original resonance profile

∣∣HIR (ejΩ)∣∣ is
the magnitude frequency response of a modification filter.

3. IMPLEMENTATION

In the context of a research project on desirable violin sound prop-
erties, the virtual body filters the string signal of a silent gener-
ator violin. Fig. 11 shows the main components of the system.
It is described in more detail in [15]. The filtering procedure is
outsourced to a Texas Instruments TMS320C6416 DSP platform
in order to achieve real-time sound processing. This results in
an overall system latency of less than 5 ms which is sufficiently
low for professional musicians. The resonance profile changes are
defined directly within a magnitude frequency response plot in a
MATLAB GUI (Fig. 12). The computations of the FIR filter coef-
ficients and the AR model parameters are also done in MATLAB.
The updated coefficients are sent to the external signal processor
via real-time data exchange channels (RTDX). The degree of ac-
curacy as well as the required computation load can be defined
by adjusting the parameters NF , p, and λ. Due to the efficient
Levinson-Durbin algorithm, the estimation of the AR model pa-
rameters takes only little computation time which allows ’on-the-
fly’ modifications of the virtual body. This fact is particularly in-
teresting for experiments with musicians where test subjects have
to rate different body properties by direct comparison.
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Figure 8: Example of modification of the first violin corpus res-
onances. From top down, separated with 30 dB offset: Original
violin resonance profile, desired new resonance profile, spectrum
of the complete AR model, and spectrum of the modified impulse
response (method b), see also description in the text and Fig. 7).
In both cases, the AR order is p = 250.

4. CONCLUSIONS

In this paper, a computational inexpensive filtering technique has
been presented which, in the context of this research, is used to
either model violin bodies or to modify given spectral properties
of violin bodies. The method combines the advantages of FIR fil-
ter design and AR modeling. Thus, it allows for highly-detailed
changes in the frequency domain while keeping the processing la-
tency low. Individual resonances e.g. can be boosted or shifted
without affecting other resonances. It has been shown that addi-
tionally applied frequency warping further reduces the filter order
significantly. Also, an implementation within a real-time environ-
ment for testing sound properties of a violin has been described
briefly.

Besides the application which is described here, the proposed
filtering technique can also be used for other audio equalization
tasks, e.g. in room acoustics.
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