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ABSTRACT 

This paper describes methods for the removal and/or separation 
of amplitude and frequency modulation of individual compo-
nents within a Fourier spectrum. The first proposed method has a 
relatively low cost and works under assumptions about the be-
haviour of both the local and non-local magnitude and phase of 
sinusoidal components for these two forms of component non-
stationarity. The second method is more expensive and re-
synthesizes components either in the Fourier or time domain fol-
lowing a parameter estimation stage. Typical applications are the 
adjustment of expressive parameters in music signals and condi-
tioning of signals prior to cross-synthesis. 

1. INTRODUCTION 

The Discrete Fourier Transform (DFT) has been widely used in 
Computer Music and Audio Processing for many years. Applica-
tions range from independent time and pitch modification 
through cross-synthesis and spectral modification to feature ex-
traction for sound modelling [1]. One of the attractive features of 
Fourier analysis and processing is that individual narrow-band 
components, such as stationary sinusoids, are clearly and intui-
tively represented in the transform domain. An assumption of 
Fourier analysis (implicit in the choice of basis functions) is that 
individual components are stationary sinusoids. Under ideal con-
ditions (i.e. a rectangular window applied to a stationary sinusoid 
whose period of oscillation is an integer multiple of the window 
length) such components appear as a single delta function in the 
Fourier domain.  
 Where signals under transformation contain non-
stationary components a common approach is to divide them into 
shorter analysis frames within which those components can be 
considered to be quasi-stationary. This is known as the short-time 
Fourier transform [2]. Longer frames increase frequency resolu-
tion but at a cost of temporal resolution and the optimum frame 
length is often determined to be the point at which the assump-
tion of component stationarity breaks down. A problem here is 
that useful and interesting audio signals tend to be multi-
component with different localisation properties in both time and 
frequency. This leads to a compromise between time and fre-
quency resolution in which the quasi-stationarity assumption is 
violated for at least some of the components. Information about 
non-stationarity is not lost in the Fourier domain (since the trans-
form is perfectly invertible) but it is embedded in the relation-
ships between the phase and magnitude of multiple transform 
bins, rather than being more directly accessible [3]. For Fourier 
domain processing of such signals which requires separation of, 

or interaction with, such non-stationarities, these phase and mag-
nitude relationships must be identified and interacted with.  
 The work described in this paper addresses signals 
which contain intra-frame non-stationarities. Its aim is to enable 
the identification of amplitude and/or frequency change of indi-
vidual signal components and to selectively remove either or 
both of them. This is either done completely in the Fourier do-
main or partly in the Fourier and then the time domain. The 
methods exploit the differences in the phase and magnitude char-
acteristics for stationary, amplitude modulated and frequency 
modulated sinusoidal components. These differences are de-
scribed and explored in the next section of this paper. The third 
section describes the two sets of identification and removal algo-
rithms for both kinds of modulation. Results from the application 
of the algorithms to different types and combinations of signal 
components are also presented in this section. A potential appli-
cation of this process, to polyphonic spectral whitening, is de-
scribed in Section 4. Finally, conclusions are presented in Sec-
tion 5. 

2. FOURIER REPRESENTATIONS OF NON-
STATIONARITY 

As stated in the previous section, the DFT offers the most com-
pact representation of a stationary sinusoid when its frequency is 
harmonically related to the analysis frame length. Where this is 
not the case, discontinuous phase in the time domain will cause 
spectral leakage into analysis bins in the Fourier domain other 
than the one in which the sinusoid is centred. The extent of this 
leakage can be controlled by the use of tapered windows. These 
reduce or eliminate abrupt phase changes but do so at the ex-
pense of the component width: even where the component period 
and frame length have an integer relationship some energy will 
exist in bins adjacent to the centre bin. In fact, this energy 
spreading in the Fourier domain is due to amplitude non-
stationarity introduced by the windowing process.  
 Different types of windows offer different trade-offs 
between the local (main-lobe) width of the component and the 
amount of non-local (side-lobe) leakage. Windowing of signals 
has been the subject of extensive research and discussion (e.g. 
[4]). For the rest of this paper the example used is the Hann (or 
raised-cosine) window. However what is presented and discussed 
can be generally applied to any symmetrical taper, the important 
distinctions are between local and non-local and phase and mag-
nitude behaviour, whatever the window being used. 
 The form of amplitude non-stationarity assumed is ex-
ponential, either increasing or decreasing. The form of frequency 
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modulation is linear increase or decrease (chirping) which gives 
rise to quadratic phase trajectories in the time domain. 

2.1. Amplitude modulation in the Fourier domain 

Exponential intra-frame amplitude change can be interpreted as a 
change in the window applied to an amplitude-stationary signal. 
Considering the continuous case, this modified window is de-
scribed by (adapting equation (3) in [4]) as a function of time t 
by: 
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where t is time in seconds, L is the window duration and α is the 
intra-frame amplitude change in Nepers (Np): 
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where ∆A is intra-frame amplitude change in dB. In the follow-
ing equations L = 1, since this makes the presentation more com-
pact but does not sacrifice generality. With this value of L the 
Fourier transform of this window as a function of frequency is 
given by: 
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From this it can be shown that the magnitude response of the 
window function is given by [5]: 
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The phase response (the arctangent of the ratio of the imaginary 
and real parts of equation (3)) does not reduce to quite such a 
compact expression. However its first derivative at f=0 does, 
which provides useful information about the phase behaviour 
around a peak in the Fourier spectrum. This first derivative is 
given by: 
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This is in fact an analytical derivation of the amplitude modula-
tion estimator empirically described in [3] and used subsequently 
in, for example, [6]. To demonstrate this, Figure 1 shows the 
first-order phase difference plotted against the continuous phase 
derivative for a sinusoid whose frequency is exactly at the centre 
of an analysis bin. The slight difference in the plotted values for 
the non-zero padded Fourier spectrum is due to the fact that the 
phase derivative is not constant around the peak and so the first-
order difference is not exactly equivalent to the actual derivative. 
The important fact to note here is that, taking the peak as the ori-
gin, the local phase is an odd function where there is intra-frame 
amplitude change and it is 0 where the component has stationary 
amplitude. 

 
Figure 1: Derivative and difference (Masri phase distortion esti-
mator for amplitude change) of the phase at f=0. 
 Figure 2 shows the magnitude response of the ampli-
tude-modified window, calculated using equation (4), for differ-
ent values of ∆A. It can be seen that much of the energy spread-
ing is into non-local bins and the main lobe (i.e. the local magni-
tude) remains quite similar to that for a non amplitude-modified 
window. Therefore a simple rule-of-thumb for amplitude modu-
lation is that the non-local magnitude increases relative to the 
local magnitude, and the local phase is an odd function.  

 
Figure 2: Normalised magnitude response of the Hann window 
multiplied by an exponentially changing amplitude function. The 
amplitude change is in 10 dB increments from 0 to 90 dB.  

2.2. Frequency modulation in the Fourier domain 

It is not possible to directly derive expressions for components of 
non-stationary frequency in the Fourier domain, except where the 
window function is a Gaussian [7]. This means that there are no 
analytic equivalents to equations (4) and (5) for frequency modu-
lation. However it has been shown empirically [3] and analyti-
cally [8, 9] that the phase is concave at a peak in the Fourier 
spectrum due to a linearly chirping component. In [9] the first 
derivative of the phase at the peak is shown to be 0 and the mag-
nitude of the second derivative is shown to be inversely propor-
tional to the chirp rate. (However the assumed approximations in 
that work do not hold for low chirp rates and aliasing occurs, 
which is discussed further below). Therefore, for frequency 
modulation, the phase is an even function around the peak.  
 Figure 3 shows the magnitude response of the Fourier 
transform of the Hann window applied to sinusoidal components 
with different chirp rates. The rates are integer multiples of Lf 
from 0 to 5Lf. Here it can be seen that the energy spreading is 
more local than is the case for amplitude modulation. For a high 
chirp rate the half-height of the magnitude response is approxi-
mately proportional to the chirp rate [8]. For a sampling rate of 
44.1 kHz and a 1024 point DFT, a chirp rate of 5Lf corresponds 
to 215 Hz per frame (almost 10 kHz/s). For chirp rates greater 
than about 6 Lf the second order difference of the phase begins to 
alias [3, 8]. This is illustrated in Figure 4 where the magnitude 
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and phase are shown for sinusoids each with different chirp rates. 
Each has the same second order phase difference around the peak 
but quite different magnitude responses and it can be seen that 
the phase curvature across a greater range of bins is different too. 
Note that where the chirp rate is negative the magnitude response 
remains the same but the phase response is inverted. 

 Fig-
ure 3: Normalised magnitude response of Hann windowed linear 
chirp. The chirp rate is in integer Lf  increments from 0 to 5Lf. 

 
Figure 4: Magnitude and phase responses of Hann windowed 
linear chirps. The chirp rates are 2.9 Lf (solid lines) and 11.7Lf 
(dashed lines). 

2.3. Interdependence of amplitude and frequency modulation 
estimators 

The previous two sub-sections have shown how frequency and 
amplitude modulation affect both the magnitude and frequency 
response of a windowed component in different ways. This sug-
gests that it is possible to separate the effects of amplitude 
change from those of frequency change and vice versa. Whilst 
this is the case for mild non-stationarities, this is not so where the 
intra-frame changes are more extreme. Large amplitude modula-
tion has a considerable effect on phase (or reassignment) based 
estimators of frequency change, since it drastically alters the ef-
fective window shape. An approach to improving the independ-
ence of such estimators using recursive 2D lookup was described 
in [10].  

3. ALGORITHMS FOR SEPARATION OF 
MODULATION TYPES 

In the previous section the Fourier domain behaviour of Hann 
windowed linear chirps and exponential amplitude change was 
considered. This section outlines two different methods for sepa-
rating these two kinds of modulation. First a simple, low-cost 
method is described, then, in the next sub-section, a more sophis-
ticated but costly approach is presented. 

3.1.  Removal of intra-frame amplitude and frequency change 
by spectral modification 

The effectiveness of some audio processing applications, such as 
cross-synthesis, can be improved by the separation of amplitude 
from frequency information. The following algorithm is designed 
to remove intra-frame amplitude change or intra-frame frequency 
change from components within a Fourier spectrum. The input to 
the DFT must be zero-phase windowed otherwise stationary si-
nusoids will have a linear, rather than flat, phase.  For the rest of 
this sub-section it is assumed that the analysis frame is not zero-
padded prior to the DFT. The algorithm is based on the following 
assumptions: 
 
1. A component with intra-frame amplitude change is represented 
by phase which is an odd function and by non-local magnitude 
that decays much more slowly than that for a stationary compo-
nent. 
2. A component with intra-frame frequency change is represented 
by phase which is an even function and by a more local change in 
magnitude. 

3.1.1. Initial stages of algorithm 

These assumptions, although crude (particularly where there is a 
high degree of non-stationarity), do lead to a reasonably effective 
method for eliminating either frequency or amplitude change, or 
both. The following steps are common to both amplitude and 
frequency removal: 
 
1. Identify individual components in the spectrum. A single com-
ponent is classified as the region between two magnitude minima 
within which the magnitude is either monotonically increasing or 
decreasing. 
2. Estimate the exact centre of component within the peak bin. 
Various methods exist for this which are both phase-based (e.g. 
frequency reassignment [13]) or magnitude based (e.g. parabolic 
interpolation) [11]. Phase-based methods are generally more ac-
curate but parabolic interpolation is used here for its relatively 
low computational cost. 
3. Fit a second-order polynomial to the local unwrapped phase, 
treating the position estimated in step 2 as the origin. The defini-
tion of local is the width of the main lobe of the window for a 
stationary signal. For a non zero-padded DFT of a Hann window 
this taken as being the peak magnitude value and the three high-
est and nearest neighbours. 

3.1.2. Removal of intra-frame amplitude change  

4. Set the slope (first order coefficient) of the phase polynomial 
to 0, this will ensure that the local phase is an even function. 
5. Set the non-local magnitudes (i.e. those bins that are between 
the two minima, but outside of the four centre bins) to those of a 
stationary sinusoid. This is done using equation (4) with α = 0 
and the scaling the result by the ratio of the actual to the synthe-
sized peak magnitude value. 

3.1.3. Removal of intra-frame frequency change 

6. Set the curvature (second order coefficient) of the phase poly-
nomial to 0, this will ensure that the local phase is an odd func-
tion. 
7. Set the local magnitudes to those of a stationary sinusoid, us-
ing equation (2) and scaling to the magnitude of the actual peak. 
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3.1.4. Removal of both intra-frame amplitude and frequency 
change 

8. Set the slope and the curvature of the local phase to 0. 
9. Synthesize all magnitude values (local and non-local) using 
equation (4) and by scaling so that actual and synthesized peak 
magnitude values match. 

3.1.5. Examples of modulation separation for single and 
multi-component signals 

 To further illustrate the procedure, Figure 5 shows the 
modifications made to the phase and magnitude of a single sinu-
soid at a frequency of 1 kHz which undergoes a 48 dB increase 
in amplitude during a single analysis frame. Figure 6 compares 
the time-domain output with the windowed input (after the zero-
phase windowing has been undone). The amplitude increase has 
been removed and the shape of the Hann window has been 
largely restored. An artefact of the process is that there has been 
a small leftwards circular shift in the overall window shape, but 
not in the phase of the underlying component. For an amplitude 
decrease of the same amount there is an equal sized shift but in 
the opposite direction.  
 Of course, this kind of correction can be done quite 
easily for single components by applying the inverse exponential 
function in the time – where this algorithm is of interest is in the 
independent correction of multiple components. Figure 7 shows 
the output for components at 1 and 2 kHz with -48 and +48 dB 
changes in amplitude respectively. As can be seen the output is 
similar in shape to the Hann window with the two frequency 
components preserved (as can be seen by the different oscillation 
rates at the start and end of the window) but, again, with a small 
circular shift. 

 
Figure 5: Original and processed magnitude and phase re-
sponses for a single component at 1 kHz with 48 dB exponential 
amplitude change. The sample rate is 44.1 kHz and the input 
frame length is 1024. 

 
Figure 6: Original and processed time domain signals. 

 
Figure 7: Original and processed time domain signals for an in-
put signal comprising two components at 1 kHz and 2 kHz with 
48 dB falling and rising amplitude. 
 
Next the removal of frequency non-stationarity is considered. 
Figure 8 shows the original and processed magnitude and phase 
spectra of a component whose frequency changes linearly from 
400 Hz to 600 Hz during a single frame. Figure 9 compares the 
input and output via the Hilbert transform. The top panel shows 
the instantaneous frequencies, derived from the first-order differ-
ence of the phase of the analytic signals. The bottom panel shows 
the amplitudes of the analytic signals. The linear frequency in-
crease for the input can be clearly seen (the errors at the start and 
end of the frame are due to the significant tapering at extremes of 
the Hann window). During the centre of the frame the frequency 
trajectory is much flatter in the output however it is not perfectly 
constant and nearer the frame edges there is significant variation 
in the instantaneous frequency. The amplitude plot shows that 
the shape of the Hann window is largely, but not perfectly, pre-
served in the output. As for the examples of amplitude change 
removal, a circular shift is evident in both the amplitude and in-
stantaneous frequency of the output. 
 Many spectral processing methods re-window the sig-
nal after re-synthesis by inverse DFT, in order to avoid disconti-
nuities at frame boundaries. This re-windowing should be ap-
plied for this method if artefacts due to these circular shifts be-
come audible. 
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Figure 8: Original and processed magnitude (above) and phase 
(previous page) responses for a single sinusoid with linearly in-
creasing frequency from 400 to 600 Hz.  

 
Figure 9: Instantaneous frequency (top) and amplitude (bottom) 
of Hilbert transformed input (dotted) and output (solid line) sig-
nals. 

3.2. Adjustment of intra-frame amplitude and frequency 
change by analysis and re-synthesis 

The method described in the previous sub-section is crude but 
reasonably effective given its computational cost. Higher quality 
methods for achieving the same goals are described in this sec-
tion. These algorithms work by analysing and then re-
synthesizing each component, either wholly in the Fourier do-
main or in the Fourier (for analysis) and then in the time (for syn-
thesis) domain. They assume that each component within a single 
frame can be wholly described as sinusoid with the parameters A, 
f, φ, ∆A and ∆f: 
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Since the model is much more sophisticated than that described 
in 3.1, adjustment of ∆A and ∆f rather than just elimination of 
one, the other or both is possible. 
 The estimation of parameters uses methods described 
in [10] and [12]. These methods provide highly accurate esti-
mates of the parameters A, f, φ, ∆A and ∆f. Additionally here, a 
similar approach (interpolated 2D table look-up) is taken to the 
estimation of φ. This is in order to reduce biasing, by amplitude 
and frequency non-stationarities, of the value derived directly 
from Fourier analysis. The table used for this phase correction is 
shown in Figure 10.  
 These methods require a zero-padded Fourier spectrum 
for accurate estimation and in this section the analysis frame is 
1025 samples, zero-padded to 8192. The initial analysis steps of 
the algorithm described in this sub-section are: 
 

  
Figure 10: Bias in phase estimation due to non-stationarity. The 
frame length is 1025 samples zero-padded to 8192. The sample 
rate is 44.1 kHz. 
 
1. Identify individual components in the spectrum. As previ-
ously, a single component is classified as the region between two 
magnitude minima within which magnitude is either increasing 
or decreasing. Since the spectrum is now zero-padded care must 
be taken to ensure that local minima due to side lobes are not 
interpreted as global minima. 
2. Frequency reassignment is used to estimate the exact compo-
nent centre within the peak bin.  
3. The parameters of the component are estimated, as described 
in [10]. As for f and A, bias in the estimation of φ is corrected, 
once estimates for ∆A and ∆f have been obtained, by the use of 
the interpolated 100 x 100 2D lookup table shown in Figure 10. 
 
Although in previous work this analysis method has been used in 
a ‘sinusoids + noise’ system, here all components are classified 
as sinusoidal, since the goal here is Fourier-based processing 
rather than generation of a spectral model (i.e. the resynthesis is 
overlap-add). 
 
Removal of intra-frame frequency change can be achieved 
wholly in the Fourier domain, since an analytic representation of 
W(f) exists where there is only amplitude non-stationarity (equa-
tion (3)). However, where there is frequency change then no such 
solution exists. A large-limits derivation of the local spectrum is 
given in [8] but is only valid for very large chirp rates, a Taylor 
series expansion which is even remotely tractable is only valid 
for low chirp rates and very close to the centre of the main lobe. 
Thus, synthesis in the Fourier domain of components with fre-
quency change ‘from scratch’ is not possible. One approach to 
eliminating ∆A where there is frequency non-stationarity might 
be to examine the difference between the Fourier spectrum of the 
component with ∆A and ∆f, with the spectrum synthesized just 
with ∆f = 0. In practice, this is not viable since it would require 
deconvolution of the two spectra in the Fourier domain which, 
without perfect parameter estimates for the component (across 
the whole spectrum – which would only be possible for a single 
component) would very likely result in instability. The solution is 
to replace Fourier synthesis followed by inverse DFT with direct 
synthesis of equation (6) for each component in the time domain. 
This solution offers considerable flexibility, including independ-
ent adjustment as well as simple elimination, but in terms of 
computational cost is certainly at the other extreme to the meth-
ods presented in the previous sub-section. In summary, the re-
moval of frequency change, whilst the values of ∆A are retained 
(or adjusted, if required) is achieved in the Fourier domain by: 
 
4. For each component, resynthesize the Fourier spectrum using 
equation (3), shifting so that the component is centred at f and 
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normalising the energy so that it is the same as for the component 
prior to ∆f removal. It is important to note that the value of f used 
should not simply be the reassigned frequency (which occurs at 
the reassigned time) but the value at the centre of the frame (re-
ferred to as the non amplitude-weighted mean instantaneous fre-
quency in [10]). Also the phase correction should assume that ∆f 
= 0 and not the value measured in the analysis (i.e. only ∆A 
should be used to correct the phase). 
5. Once all components have been resynthesized transform back 
to the time domain via the inverse DFT. 
 
∆f removal by this method is shown in Figure 11. The parameters 
are the same as those in Figure 9 except ∆A = 48 dB, rather than 
0 dB. Clearly this method is more effective than the one used for 
Figure 9, since the shape of the amplitude modulated window is 
perfectly retained and the frequency trajectory is more uniformly 
flat (except where artefacts of the Hilbert transform are observed 
due to tapering by the window function). To illustrate the method 
working independently on two combined components (with pa-
rameters f = 500 Hz, ∆A = 48 dB, ∆f = 200 Hz/frame and f = 1 
kHz, ∆A = -48 dB, ∆f = -200 Hz/frame) Figure 12 shows the in-
put and output. Also shown is the sum of the two components 
synthesized with ∆f = 0 Hz/frame, but all other parameters the 
same. It can be seen that the output from the algorithm is indis-
tinguishable from this signal synthesized in the time-domain us-
ing a priori knowledge of the parameters. 

 
Figure 11: Instantaneous frequency (top) and amplitude (bottom) 
of Hilbert transformed input (dotted) and output (solid line) sig-
nals. 

 
Figure 12: Original (dotted) and processed (solid line) time do-
main signals. For comparison the ideal output is also shown 
(crosses). 
 The removal of amplitude change is achieved in the 
Fourier and time domains by: 
 
6. For each component resynthesize in the time domain using 
equation (6) with ∆A = 0, but with all other parameters as esti-
mated in steps 2 and 3. 
7. Sum all components and apply Hann window. 
 
Whilst more costly than the Fourier domain method, this time 
domain synthesis approach can also be used for elimination of ∆f 
whilst retaining ∆A. In fact, it offers total flexibility over the in-

dependent modification (within the limitations of the parameter 
estimation) of both of these forms of non-stationarity. This offers 
the possibility of, for example, increasing vibrato in signals 
whilst reducing tremolo in others. 
 Figure 13 shows the Hilbert transformed input and 
output for a signal with the same parameters as for Figure 11. 
The amplitude change has been successfully removed, restoring 
the shape of the Hann window whilst the frequency trajectory has 
been retained (although close inspection reveals a slight over-
estimation of ∆f, due to the interdependency of the estimators of 
this parameter and ∆A). A final example given demonstrates the 
capacity of this algorithm to handle multiple component signals 
successfully. Figure 14 shows the inputs (top panels) and outputs 
(bottom panels) from the algorithm for two frames of Gaussian 
white noise with ∆A of 48 dB (left panels) and -96 dB (right pan-
els) respectively. In the 48 dB case 110 components are sepa-
rately identified and re-synthesized with ∆A = 0 dB, in the -96 
dB case there are 98 components. It can be seen that the re-
combination of synthesized components has a Hann-like ampli-
tude profile in both cases. 

 
Figure 13: Instantaneous frequency (top) and amplitude (bottom) 
of Hilbert transformed input (dotted) and output (solid line) sig-
nals. 

 
Figure 14: Input noise with amplitude ramps (top panels, left 48 
dB, right -96 dB), output with amplitude ramps removed (bottom 
panels). 

4. APPLICATION TO FREQUENCY SHAPING AND 
POLYPHONIC SPECTRAL WHITENING 

In the previous section two methods for removing either ampli-
tude or frequency change from a single Fourier analysis frame. In 
this section a related application area for this work is described, 
inspired by Christopher Penrose’ Shapee algorithm [14]. 

4.1. Frequency shaping 

Many cross-synthesis applications employ the short-time Fourier 
transform (STFT) with the frame length comparable to the period 
of the lowest frequency audible by humans (20 Hz, 50 ms). A 
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reasonable, albeit simplistic assumption, is that the magnitude of 
the transform data represents the spectral envelope of the signal 
and the phase represents the exact location of individual fre-
quency components. The most straightforward STFT-based cross 
synthesis method combines the magnitude from one input signal 
(the resonator, or the ‘formant reference’) with the phase from 
another signal (the excitation, or ‘frequency reference’) [1]. The 
output is intended to resemble a perceptual hybrid of the two in-
put sounds. However, good separation between excitation and 
resonance is not always achieved with such a basic approach. 
The process of frequency shaping was developed to improve the 
transfer of frequency information between sounds [15]. It recog-
nises that the frequency content of a signal in the Fourier domain 
is described by both the magnitude and phase around a peak due 
to a component. The process divides the Fourier spectrum into 
‘shaping regions’ of equal width from DC to Nyquist. It is the 
width of these regions which determines how frequency informa-
tion is transferred between signals. The recommended default 
width is that of the main lobe of the window function used. For 
each frame, the hybrid spectrum Xhybrid is calculated according to 
[14]: 
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Practical implementations, as the processor Shapee, are available 
in various forms, by Penrose and Eric Lyon (Max/MSP object 
[16]) and by this author (Steinberg VST plug-in and Matlab 
[17]). The UNIX command line version (part of PVNation) is no 
longer available. 

4.2. Polyphonic spectral whitening 

Implicit in both frequency shaping and the more straightforward 
combination of magnitude and phase data, is a spectral whitening 
process. Where magnitude is combined with phase then all of the 
magnitudes of the phase reference are effectively set to 1, creat-
ing a white spectrum. For frequency shaping, the whitening stage 
of the process is equivalent to equation (8) with the numerator set 
to 1. Since the process does not require pitch detection (as is the 
case for some cross-synthesizers based, for example, on linear 
predictive coding (LPC)) and works on a wide range of harmonic 
and enharmonic signals, it can be considered a polyphonic whit-
ening process [14]. Considering cross-synthesis as a two stage 
process: whitening of the frequency reference followed by the 
application of the spectral envelope of the formant reference, of-
fers more flexibility. For example, a frequency reference that has 
been whitened by the process described in this section could then 
be filtered by the infinite impulse response filter derived via 
LPC.  

4.3. Application of modulation separation 

The aim of frequency shaping is to improve the separation of fre-
quency and spectral magnitude information between two signals 

that are being cross-synthesized. As for many Fourier-based 
processes it will be most successful when the signals are station-
ary during each analysis frame. Where the signals are non-
stationary then these amplitude and/or frequency changes are 
embedded in both the magnitude and phase data of the signals. 
The algorithms outlined in the previous two sections of this pa-
per are designed to remove one or other of these non-
stationarities. By removing the intra-frame amplitude change 
from the frequency reference and the intra-frame frequency 
change from the formant reference as pre-processing stage in a 
cross-synthesis process the separation between amplitude and 
frequency information will be improved. 
 The complete elimination of amplitude/frequency 
change in the formant/frequency references will not always suc-
ceed in the separation of frequency information. For example 
ensembles of acoustic instruments playing in unison will not be 
perfectly in tune with each other. This combination of very 
closely spaced partials will produce components that have slow 
amplitude and frequency change (i.e. that beat). In this case the 
amplitude modulation is a representation of the frequency con-
tent of the signal and should not be removed from the frequency 
reference. This can be avoided by removing intra-frame ampli-
tude change which is above a certain threshold. The final algo-
rithm presented in the previous section offers the possibility of 
applying this thresholding. 
 Another consideration is the fact that these processes 
do not distinguish between ‘noisy’ and more stable, sinusoidal 
components. However, it is not clear how a cross-synthesis 
method should classify noise. Does noise contain information 
about amplitude or frequency or both? Where a separation be-
tween these component types is required methods, such as those 
surveyed in [18], could employed. Examples of frequency shap-
ing and polyphonic whitening, with and without modulation re-
moval (or suppression) using the methods described in this paper 
are available online [19]. 

5. CONCLUSIONS 

This paper has presented two set of algorithms for the removal of 
intra-frame amplitude and/or frequency change from Fourier 
spectra. This is done entirely in the Fourier domain, except for 
the final algorithm, which uses parameters derived in the Fourier 
domain for time domain resynthesis. Although costly, this final 
algorithm offers adjustment, rather than simple removal of non-
stationarity, and is highly effective for a wide range of values of 
∆A and ∆f. Matlab code that implements these processes is avail-
able online [19]. 
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