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ABSTRACT

Discrete wavelet transform (DWT) has gained widespread recog-
nition and popularity in signal processing due to its ability to un-
derline and represent time-varying spectral properties of many tran-
sient and other nonstationary signals. However, DWT is a shift-
variant transform. This shift-variance is a major problem with the
use of DWT for transient signal analysis and pattern recognition
applications. A number of modified forms of DWT have been in-
vestigated in recent years that provide approximate shift-invariant
transform but at the cost of increased redundancy and complexity.
In this paper, a shift-invariant analysis scheme is proposed which
is nonredundant. This scheme combines minimum-phase (MP) re-
construction with the DWT so that the resultant scheme provides a
shift-invariant transform. The detailed properties of MP signal and
different methods to reconstruct it are explained. The proposed
scheme can be used for the analysis-synthesis, classification, and
compression of transient sound signals.

1. INTRODUCTION

A number of digital signal analysis techniques have been devel-
oped and applied to represent the transient sound signals. Discrete
wavelet transform is the most suitable of these techniques because
of its localization in both time and frequency [1], [2], and [3].
DWT provides an excellent framework for the analysis of transient
sound signals as the redundancy and correlation among the resul-
tant wavelet coefficients (WC) are very small. However, it is well
known that DWT is a shift-variant transform which means the WC
of two similar transient sound signals are considerably different
even if the two signals just differ by time shift. The lack of shift-
invariance in DWT causes problems when wavelet multiresolution
representation is used in transient sound analysis, classification,
identification, and detection applications [4], [5], [6], and [7].

In practice, it is highly desirable that when DWT is applied
to a time-shifted signal, the time shift present in the signal should
only shift the numerical descriptors of the WC rather than change
them, otherwise recognition of the similar features could be com-
plicated. To solve the shift-variance problem of DWT, a num-
ber of schemes have been proposed in recent years [8], [9], [10],
and [11]. In these schemes, the wavelet coefficients are calculated
with the fast filter bank algorithm [12] but without dyadic decima-
tion. These schemes enable the restoration of the shift-invariance
property of the DWT by modifying the conventional DWT, but
they also increase redundancy, computational cost, and complex-
ity of the transform. Therefore, additional compression and feature
selection methods need to be used with these transforms for signal

representation and in pattern recognition applications.
This paper presents a shift-invariant analysis scheme for finite-

length transient sound signals that is based on minimum-phase
reconstruction and discrete wavelet transform. In the proposed
scheme, the MP signal is realized by decomposing the input sig-
nal into MP and all-pass (AP) components. The MP signals of the
input signal and its time-shifted version are identical for suitably
band-limited signal and therefore the DWT is applied to the MP
version of the input signal. This shift-invariant analysis scheme
is non-redundant, i.e., it maintains the compact representation of
the signal and has a low computational complexity. The time shift
present in the signal is extracted as an AP signal having the same
phase as the original. The output signal can be reconstructed by
reconstituting the phase from the AP signal and the processed MP
signal. The presented shift-invariant analysis scheme can be poten-
tially used in transient sound signals analysis-synthesis, morphing,
detection, identification, and classification applications.

2. ANALYSIS OF TRANSIENT SOUND SIGNALS

2.1. Conventional Discrete Wavelet Transform

Discrete wavelet transform is computed using the Mallat’s pyra-
midal algorithm, which is found to yield a fast computation of
wavelet transform [12]. This algorithm uses the filter bank anal-
ysis to decompose the input signal into approximation and detail
coefficients. Let x[n] and x[n] = x[n+ k] be the two finite length
discrete-time transient sound signals of size N . The transient sig-
nal x[n] is a time-shifted version of x[n] where k ∈ < is the shift
factor. The energy of the finite length signals x[n] and x[n] can be
calculated using Parseval’s theorem as,

E =
∑
n

|x[n]|2 =
1

2π

∫ π

−π
|X(ω)|2dω (1)

E =
∑
n

|x[n]|2 =
1

2π

∫ π

−π
|X(ω)|2dω. (2)

The signal x[n] is simply a time-shifted version of x[n], therefore
the total energy contained in x[n] is equal to the total energy of the
original signal, i.e., E = E. The Mallat’s pyramidal algorithm is
applied to the signals x[n] and x[n] to decompose both the signals
into approximation coefficients aj , aj , and detail coefficients dj ,
dj where the subscript represents the level of decomposition. It
can be shown that the total energy of each input signal is divided
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between the WC, i.e.,

E =
∑
n

|x[n]|2 =
∑
m

|aJ [m]|2 +

J∑
j=1

∑
m

|dj [m]|2 (3)

E =
∑
n

|x[n]|2 =
∑
m

|aJ [m]|2 +

J∑
j=1

∑
m

|dj [m]|2 (4)

where J is the highest number of decomposition. It can be ob-
served from Eqs. (3) and (4) that DWT conserves the total energy
of the input signals in their wavelet coefficients but because of its
shift-variant nature, the WC of the signals x[n] and x[n] are differ-
ent at all decomposition levels, i.e., aj 6= aj , and dj 6= dj for all
j = 1, 2, . . . , J . This phenomenon causes major variations in the
distribution of energy in corresponding subbands of signals x[n]
and x[n], i.e., ∑

m

|aj [m]|2 6=
∑
m

|aj [m]|2 (5)∑
m

|dj [m]|2 6=
∑
m

|dj [m]|2 (6)

for all j = 1, 2, . . . , J . The discrepancy between the WC and
corresponding subbands energy pose many challenges in pattern
recognition applications where the WC based features are used to
train a model for the input signals.

2.2. Alignment of Transient Signals

When two similar transient signals such as x[n] and x[n] are de-
composed using DWT, the differences between their WC and sub-
bands energy mainly come from the fact that they differ by a time
shift. One approach to overcome or minimize this disparity con-
sists in aligning the time-shifted input signals with the original sig-
nal. Let us take the Fourier transforms of original x[n] and its
time-shifted version x[n] transient signals, and express the magni-
tude and phase in polar form as,

X(ω) = |X(ω)| ∠X(ω) (7)

X(ω) = |X(ω)| ∠(X(ω)− ωk) = X(ω) e−jωk (8)

where k is the shift factor. When the shift factor is simply an inte-
ger i.e. k ∈ Z, the alignment of such signals is a straightforward
task. But in real time applications, any phase modification which
involves a linear phase being added to signal causes a continuous
shift in the signal, i.e. the shift is most likely to be a fractional
number i.e. k ∈ R. Secondly, there are situations where the phase
shift is a nonlinear function of angular frequency ω, and conse-
quently the shifted signal may look considerably different from
the original. Furthermore, the two signals received from the same
source at different time interval may look different because of vari-
ation in the added noise and/or external interference. Therefore,
the alignment of such input signals is not a trivial task and can not
be achieved easily.

3. PROPOSED SHIFT-INVARIANT ANALYSIS SCHEME

One of the key advantages of using the conventional DWT is that it
provides a compact representation of a transient signal in time and
frequency which can be computed efficiently. These properties of
conventional DWT is compromised in the modified forms of DWT

to achieve the shift-invariant transform [8], [9], [10], and [11]. We
propose a scheme which does not compromise on these key ad-
vantages of the conventional DWT and serves as a shift-invariant
analysis scheme for any finite-length transient signal.

The proposed shift-invariant analysis scheme consists of two
stages. In the first stage, the MP signals are reconstructed from
the input transient signals and in the second stage, DWT is applied
to the MP version of the input signals. The purpose of MP recon-
struction of the input transient signals is to remove the phase and
any time shift present in them so that they become aligned. There-
fore, the DWT is applied to the MP signals which are aligned and
consequently produce the same set of WC and subbands energy
at all decomposition levels. The block diagram of the proposed
shift-invariant analysis scheme is depicted in Fig. 1.

Figure 1: DWT based shift-invariant analysis scheme.

3.1. Minimum-Phase Signal

A signal is called minimum-phase if all zeros of its z-transform lie
within the unit circle. When a signal is converted to its minimum-
phase version, all the energy of the signal is transferred to the MP
signal [13]. In other words, the magnitude spectrum of the input
signal and its MP version are exactly the same [14]. An MP signal,
also known as minimum-delay signal, starts at time n = 0 with
maximum energy value and decays sharply with time. The mag-
nitude and phase spectra of the MP signals, reconstructed from a
finite length transient signal and its time-shifted versions, are ex-
actly the same. Therefore, any finite length transient signal and
its time-shifted version can be aligned by constructing their corre-
sponding MP signals.

3.2. Construction of MP Signal

Any finite duration mixed-phase causal signal can be decomposed
into minimum-phase and all-pass components where all the energy
of input signal is extracted in the MP signal, and the phase and time
shift present in the signal are presented as an AP signal. The de-
composition can be obtained by either using a parametric method
such as poles-zeros factorization or a nonparametric method such
as cepstrum analysis [13], [14]. Let us take the transient signal
x[n] and its time-shifted version x[n] and decompose them into
MP and AP signals using one of the method mentioned above. The
signals can be represented in terms of the resultant components as,

x[n] = xmp[n] ∗ y[n] (9)
x[n] = xmp[n] ∗ y[n] (10)

where xmp[n], xmp[n] are MP signals and y[n], y[n] are AP sig-
nals. The magnitude and phase spectra of Eqs. (9) and (10) can be
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written as;

X(ω) = Xmp(ω) Y (ω) = (|Xmp(ω)| ∠0) (1 ∠Y (ω)) (11)
X(ω) = Xmp(ω) Y (ω) = (|Xmp(ω)| ∠0) (1 ∠Y (ω)). (12)

From Eqs. (7), (8), (11) and (12) that the xmp[n] and xmp[n] have
zero phase and same magnitude response, which implies that both
MP signals are aligned and equal i.e.

Xmp(ω) = Xmp(ω) ⇔ xmp[n] = xmp[n]. (13)

This is the case when x[n] is just a time-shifted version of x[n].
However, if the signals x[n] and x[n] are two different samples
from the same source, then the equality in the Eq. (13) becomes an
approximation.

3.3. All-Pass Signal

The AP signal can be discarded, with reference to Fig. 1, when the
proposed scheme is applied to extract WC based features which are
used to model the classification or detection system. However, the
AP is retained in the case where the input signal is reconstructed at
the end by adding the phase from the AP signal to the MP signal.
The AP signal can be either stored as it is or approximated by a
finite impulse response (FIR) filter.

3.4. Shift-Invariant Decomposition

In the proposed scheme, DWT is applied to the MP version of
the input signal. Therefore, the Mallat’s pyramidal algorithm can
be applied to signals x[n]mp and x[n]mp which decomposes them
into approximation coefficients ăj , ăj and detail coefficients d̆j ,

d̆j . Consequently, this decomposition scheme produces the same
set of approximation and detail coefficients at all decomposition
levels, i.e., ăj = ăj , and d̆j = d̆j for all j = 1, 2, . . . , J . The pre-
sented scheme also produces the same energy distribution across
corresponding subbands at all decomposition levels, i.e.,∑

m

|ăj [m]|2 =
∑
m

|ăj [m]|2 (14)

∑
m

|d̆j [m]|2 =
∑
m

|d̆j [m]|2 (15)

for all j = 1, 2, . . . , J .

4. POTENTIAL APPLICATIONS

The proposed scheme is applicable to a number of applications,
including analysis-synthesis, morphing, detection, identification,
and classification of transient sound signals. In fact, the proposed
shift-invariant scheme has already been employed by the author in
the morphing of transient sounds where it was used to generate in-
termediate and other novel sounds [15]. It has potential usage in
underwater sound detection, identification, and classification ap-
plications where sound features and their energy are sensitive to
time shift.

To illustrate the effectiveness of the proposed shift-invariant
analysis scheme, it is applied to a synthetic transient signal and its
time-shifted version. A synthetic transient signal s was generated
from normally distributed random numbers enveloped by a sym-
metrical Hann window. Another transient signal s was obtained

by shifting the generated signal s by 10.7 samples. The rational
delay in the signal s was realized using a Thiran fractional-delay
filter [16]. The transient signals s and s were analyzed using DWT
up to 5th decomposition level. The input signals and their decom-
position coefficients are plotted in Fig. 2a, 2b, and 2c respectively.
It can be observed from Fig. 2b, and 2c that the WC of the signals
s and s are not identical at each decomposition level. The total en-
ergy in each frequency band is also plotted in Fig. 2d. It can also
be observed that the energy distribution in corresponding subbands
is different for the original signal and its time-shifted version.
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Figure 2: (a) The original signal s and its delayed version s, (b)
approximation coefficients aj & aj , (c) detail coefficients dj & dj ,
(d) energy distribution in subbands.

The proposed scheme decomposes the signals s and s into MP
components smp, smp, and AP components y and y. It can be ob-
served from Fig. 3a that the MP signals smp and smp are similar
and aligned. Now the application of DWT on extracted MP signals
of s and s generates the same set of approximation and detail coef-
ficients, as depicted in Figs. 3b, and 3c. The energy distribution in
corresponding subbands is also identical for MP versions of s and
s at all decomposition levels as shown in Fig. 3d. It can also be
observed from the magnitude and phase responses of MP and AP
components, Fig. 3e, that the phase of input signal and any time
shift present are extracted in AP signals. The time shift present in s
appeared as additional delay in the phase response y as compared
to y.

5. CONCLUSIONS AND FURTHER RESEARCH

A DWT based shift-invariant transform was presented in this pa-
per, which can be used to represent a signal in analysis-synthesis
and compression applications, or to extract features in signal de-
tection and classification applications. The proposed scheme is a
shift invariant in a sense that it produces the same set of WC and
subbands energy at all decomposition levels regardless of any time
shift present in the input signals. This scheme maintains the prop-
erties of conventional DWT such as compact representation and
computational efficiency.
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Figure 3: (a) MP sequences of original signal smp and its delayed
version smp, (b) approximation coefficients ăj & ăj , (c) detail

coefficients d̆j & d̆j , (d) energy distribution in subbands, (e) the
magnitude and phase response of MP and AP components.

The input transient signals were aligned by constructing their
MP versions such that each input signal and its MP version contain
the same energy. The DWT was applied to the MP version of input
signal. The entire phase and any time shift present in each input
signal were extracted as AP signal. The proposed scheme was
applied on a synthetic signal which produced the same set of WC
and subbands energy at all decomposition levels.

As part of future work, we will compare different methods to
construct MP and AP components and their real time implemen-
tation as well as investigate different ways to approximate the AP
signal using either FIR filters or any other meaningful compact
representation. It would also be interesting to investigate how the
construction of MP signal will affect the characteristics of the at-
tack part of the input transient signal as it might play an important
role in sound identification and classification.
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