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ABSTRACT
In this paper, we focus on the signal-to-noise ratio (SNR) improve-
ment in single channel audio recordings. Many approaches have
been reported in the literature. The most popular method, with
many variants, is Short Time Spectral Attenuation (STSA). Al-
though this method reduces the noise and improves the SNR, it
mostly tends to introduce signal distortion and a perceptually an-
noying residual noise usually called musical noise. In this pa-
per we investigate the use of Non-negative Matrix Factorization
(NMF) as an alternative to the STSA for the digital curation of
musical heritage. NMF is an emerging new technique in the blind
extraction of signals recorded in a variety of different fields. The
application of NMF to the analysis of monaural recordings is rel-
atively recent. We show that NMF is a suitable technique to ex-
tract the clean audio signal from undesired non stationary noise
in a monaural recording of ethnic music. More specifically, we
introduce a perceptual suppression rule to determine how the per-
ceptual domain is competitive compared to the acoustic domain.
Moreover, we carry out a listening test in order to compare NMF
with the state of the art audio restoration framework using the EBU
MUSHRA test method. The encouraging results obtained with this
methodology in the presented case study support their wider appli-
cability in audio separation.

1. INTRODUCTION

Noise reduction, aiming at estimating the desired clean speech sig-
nal from noisy observations, is a very important problem and has
attracted a significant amount of research and engineering atten-
tion over the past few decades. In particular, the enhancement
of audio sources corrupted by non stationary noise in a monaural
recording is a challenging task, only partially addressed by clas-
sical methods in Speech Enhancement [1], also adopted in Digital
Audio Restoration [2]. A different method is followed by Percep-
tually motivated approaches, like Computational Auditory Scene
Analysis (CASA), where the main idea is to simulate the human

auditory system and the perceptual processes there involved [3]. A
more recent approach to separate an acoustic source is provided by
Non-negative Matrix Factorization (NMF). The basic idea is that
we can obtain a meaningful part-based factor decomposition [4]
from a data observation (e.g., the monaural recording) by the only
constrain of non-negativity and sparsity, since no cancellation of
factors can occur and only additive combinations are permitted.
The use of sparse code can favor a factorization where only a few
dictionary elements are used to model the source, introducing an
`1 norm penalty term on the coefficients of the code matrix, which
explicitly enforces sparseness [5]. However, a further non trivial
step is needed to assign the decomposed parts to the source of in-
terest (e.g., the original audio signal) to discard the interference
source (e.g., the corrupting noise). The proposed approach tries
to solve this problem with a solution based on an extended Non-
negative Matrix Factorization algorithm and prior knowledge on
interference. In addiction, our approach reduces both distortion
and perceptually annoying musical noise by taking into account
the masking phenomenon of the human hearing, in order to calcu-
late a noise masking threshold from the estimated target source.

We apply this method to improve the quality of ethnic music
noisy musical recordings on Shellac 78 rpm phonographic discs1.
There are many reasons to believe that these audio documents of
ethnic music are the most complex in terms of restoration. Eth-
nic music refers to the music recordings of non-Western cultures
since the beginning of the 20th century and the problems of multi-
ple formats and carriers (e.g., in analogue domain: wax cylinders,
sonofils, discs, tapes, and cassettes; in digital domain: magnetic
tapes and optical disks) involved with the documenting, research-
ing, and preservation of this music. The analysis of Western mu-

1The Shellac disc is a common audio mechanical carrier. The audio in-
formation is recorded by means of a groove cut into the surface by a stylus
modulated by the sound, either directly in the case of acoustic recordings
or by electronic amplifiers. There are more than 1,000,000 Shellac discs
in the worldwide audio archives containing music ever re-recorded (R&B,
Jazz, Ethnic, Western classical, etc.).
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sic has been developed almost exclusively on the basis of written
scores, which represent musical performance models, rather than
the performance itself. Since ethnic music recordings were often
made with non-professional systems (low-quality, poorly aligned
and maintained – often by technically unskilled researchers – with-
out generally accepted standards and recording practices), the au-
dio carriers – almost obsolete – show risk of deterioration. In
this sense, the ethnic-musical heritage is in danger of disappear-
ing, of being forgotten in some public archive or, in most cases, a
private collection, because of the poor quality of the material on
which the audio documents were recorded and the rapid evolution
of the recording formats – that make obsolete and scarcely read-
able many old recordings. Obviously, this has not been the destiny
of music repertoires of wider interest, such as classical western
music, rock/pop, or jazz. In these cases, the recording compa-
nies have re-recorded most of the audio documents, particularly
those of high commercial values. Unfortunately, the same has not
happened to ethnic and traditional repertoires. In this sense, it is
particularly important to restore the ethnic audio documents that
are often the only testimonial of disappeared oral cultures.

The rest of this paper is organized as follows. Sec. 2 details
the proposed audio restoration method: in particular, Sec. 2.5 in-
troduces the perceptual suppression rule used. Sec. 3 presents ex-
tensive objective quality measures. Since we developed a psychoa-
coustic technique, a natural choice to measure quality was the Per-
ceptual Evaluation of Speech Quality (PESQ), defined by ITU-T
recommendation P.862. In order to validate the system, we carry
out a listening test – using ethnic music audio documents – in or-
der to compare NMF with the state of the art audio restoration
framework using the EBU MUSHRA test method (Sec. 4). Final
conclusions are drawn in Sec. 5.

2. AUDIO ENHANCEMENT FRAMEWORK

The objective of the proposed method is to estimate the undesired
components, or interference, n(t) and the source of interest, or tar-
get, s(t) directly from the observable data mix in the time domain,
with the minimum a priori knowledge. We assume that saturation
effects are absent in the mixed observable signal x(t), that can be
expressed as:

x(t) = s(t) + n(t) (1)
We assume that s(t) and n(t) are uncorrelated. This extends

linearity in the power spectral domain, and let us to transform the
data in a non-negative representation suitable for NMF processing:

|X(t, f)|2 = |S(t, f)|2 + |N(t, f)|2 (2)
where the observable signal x(t) is transformed in a time-

frequency representation X(t, f). Our method is shown in Fig. 1
and functional modules are discussed in the next subsections.

2.1. Signal Representation

A common technique to manipulate audio signals consists of trans-
forming the time-varying observed signal in a time-frequency rep-
resentation (by means a Short Time Fourier Transform – STFT –
analysis) which shows the signal energy variation along time el-
ements (frames) and frequency elements (bins), thus providing a
non-negative matrix representation. In the following, we represent
the signal in the time-log frequency domain as an element-wise
exponentiated STFT:

Figure 1: General scheme of the proposed audio enhancement
framework.

X = |STFT{x(t)}|γ (3)

The linearity expressed by Eq. 2 applies also to Eq. 3 when
γ = 2, but wide experimentation shows that γ is an important pa-
rameter to NMF performance. In particular,it turns out that γ = 2
is a bad choice for component separation, while an optimal choice
is γ = 0.67, which corresponds to the cube root compression of
power STFT. Surprisingly, this is consistent with Stevens’ Power
Law exponent for the perceived loudness of a sound pressure of
3 kHz tone stimulus. Moreover, Stevens’ Power Law was used to
model cochlear non-linearities [6] and intensity to loudness con-
version in Perceptual Linear Predictive (PLP) speech analysis [7].
More recently, Plourde and Champagne integrated the cochlear
compressive nonlinearity in a Bayesian Short Time Spectral At-
tenuation (STSA) estimation for speech enhancement [8]. This
curious coincidence about the exponent value, suggests to follow
a perceptually motivated approach to audio de-noising, as we ex-
plain in Sec. 2.5.

2.2. Voice Activity Detection

A Voice Activity Detector (VAD) is widely used as a component of
speech enhancement methods to update the noise spectrum frame
by frame. In our implementation, a statistical-model based VAD [9]
is used to construct two diagonal binary square matrices:

A(t, t) =

{
1, if target source is present in frame t
0, otherwise.

(4)

and its complementary:

Ā(t, t) =

{
1, if target source is absent in frame t
0, otherwise.

(5)

This allows us to train the undesired components dictionary,
computing NMF on the signal:

Z(f, t) = X(f, t)Ā(t, t) (6)

during target-absent periods, and then separate the target compo-
nents dictionary, computing a modified NMF ∗ on the signal:

Y (f, t) = X(f, t)A(t, t) (7)
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during target-present periods. Assuming that the target and the
undesired component are additive (as stated in Eq. 1), the VAD
module has to decide, for each frame t, in favor of one of the two
hypotheses:

H0 : Xf = Nf : target source absent, (8)
H1 : Xf = Sf +Nf : target source present. (9)

The following Likelihood Ratio Test (LRT) based VAD deci-
sion rule was used:

1

L

L−1∑
f=1

logΛf
H1

≷
H0

η (10)

where the likelihood ratio for the f th bin is:

Λf =
p(Xf |H1)

p(Xf |H0)
=

1

1 + ξf
exp

(
γfξf

1 + ξf

)
(11)

In the previous equation, ξf and γf define the a priori and a pos-
teriori SNRs. In particular, ξf is estimated using the decision di-
rected approach (with α = 0.99) as in [10], L is the size of the
FFT and η is a user defined threshold. An Hidden Markov Model
(HMM) hang-over algorithm extends and smoothes the VAD de-
cision in order to recover target periods that are masked by the
undesired component. Fig. 2 shows an example of VAD applied to
a real-world noisy recording (ethnic music, 78 rpm Shellac disc)
with singing voice and music accompaniment2.

2.3. Undesired component training

During training stage, we assume availability of some target-ab-
sent frames, computed applying a VAD to the observable signal
X(f, t); the resulting signal Z(f, t) of Eq. 6 is equivalent to
X(f, t), with target-present frame suppressed. Applying a Reg-
ularized Euclidean NMF to Z(f, t), we obtain the strictly positive
dictionary Dn(f, k) and sparse code Hn(k, f) matrices, where k
is the number of user defined elements of interference. Following
the simplification proposed in [5], we define as follows the com-
plete multiplicative iterative algorithm:

1. Initialize Dn(f, k) and Hn(k, t) with random values be-
tween 0 and 1, multiply Hn(k, t) by Ā(t, t) to suppress
target-present frames.

2. Define Euclidean column-wise normalization of the dictio-
nary to prevent joint numerical drifts in Hn and Dn:

D̄n(f, k) =
Dn(f, k)√∑
f Dn(f, k)2

=
Dn(f, k)

||Dn(k)||2
(12)

3. Calculate the reconstruction according to:

X̂n = D̄nHn. (13)

4. Update the sparse code according to the rule:

Hn ← Hn •
D̄T
nZ

D̄T
n X̂n + λn

. (14)

2Sta terra nun fa pi mia (This land is not for me), by R. Gioiosa, arr. R.
Romani – 78 rpm 10” Brunswick 58073B (E 26621/2), rec. in New York,
February, 23, 1928, length 3’22".

5. Calculate the reconstruction according the Eq. 13.
6. Update the non-normalized dictionary according to the rule:

Dn ← D̄n •
ZHT

n + D̄n • (1(X̂nH
T
n • D̄n))

X̂nHT
n + D̄n • (1(ZHT

n • D̄n))
(15)

7. Repeat from step 2 until convergence to a local minimum
of the Euclidean Cost function:

Ci =
1

2

∑
f,t

(Z(f, t)− X̂n(f, t))2 + λn
∑
k,t

Hn(k, t)

(16)
We stop the algorithm at iteration i when |Ci − Ci−1| <
εCi.

The • operator indicates element-wise multiplication, the frac-
tion line indicates element-wise division, and 1 is a square matrix
of ones. The regularization parameter λn weights the importance
of the sparsity term to the reconstruction.

The final Dn matrix represents the dictionary of the interfer-
ence learned from data and it will be used by the next module to
estimate the two additive sources composing the mixed signal.

2.4. Estimation of undesired source and target source

In order to estimate the sources, we use again a constrained NMF
(NMF*) to compute the dictionary of the target source and the
sparse code of both sources. Assuming, as usual, the additivity
of sources, the dictionary of the mixed signal can be seen as the
concatenation of the individual source dictionaries. Moreover, the
sparse code of the mixed signal can be seen as the concatenation
of the individual source sparse codes:

X = Xs +Xn =
[
DsDn

] [Hs
Hn

]
+ E = DH + E (17)

In the previous equation, E is an unknown matrix representing
approximation errors. We can not solve Eq. 17 directly with NMF,
due to a permutation ambiguity. In fact, we can write

DH = (DP )(P−1H) (18)

where P is a generalized permutation matrix, i.e., a matrix with
only one non-zero positive element in each row and each column.

Schmidt, Larsen and Hsiao [11] suggest to pre-compute Dn,
as we have done in the previous section for the interference in
the Z(f, t) signal; then learn Ds(f,m), Hs(m, t) and Hn(k, t),
where m is the number of user defined elements of the target
source, with a modified constrained NMF, which we apply to Y (t, f)
in Eq. 7 (i.e. the observed signal in the target-present frames).
Similarly to the previous section, we describe here the complete
one-dictionary constrained (D∗

n) algorithm as:

1. Initialize Ds(f,m), Hs(m, t) and Hn(k, t) with random
values in the range [0÷1]; to multiplyHs(m, t) andHn(k, t)
by A to suppress target-absent frames.

2. Define Euclidean column-wise normalization of the target
dictionary to prevent joint numerical drifts in Hs and Ds:

D̄s(f,m) =
Ds(f,m)√∑
f Ds(f,m)2

=
Ds(f,m)

||Ds(m)||2
. (19)
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Figure 2: Statistical VAD at work. (a) In the spectrogram of real-world de-clicked registration excerpt, we recognize harmonic musical
structure embedded in the period stationary wide-band noise. (b) Musical content classification providing to the VAD a priori information
of initial target-absent (i.e. noise only) time extension = 0.46 s and threshold η = 0. (c) Singing Voice classification providing to the VAD
a priori information of initial target-absent (i.e. unvoiced) time extension = 17 s and threshold η = 0.1.

3. Calculate the overall reconstruction according to:

X̂ = D̄sHs + D̄nHn. (20)

4. Update the sparse code of target according to the rule:

Hs ← Hs •
D̄T
s Y

D̄T
s X̂ + `s

. (21)

5. Calculate the overall reconstruction as in Eq. 20.

6. Update the sparse code of interference according to the rule:

Hn ← Hn •
D̄T
nY

D̄T
n X̂ + `n

. (22)

7. Calculate the overall reconstruction as in Eq. 20.

8. Update the target non-normalized dictionary according to
the rule:

Ds ← D̄s •
Y HT

s + D̄s • (1(X̂HT
s • D̄s))

X̂HT
s + D̄s • (1(Y HT

s • D̄s))
. (23)

9. Repeat from step 2 until it reach the convergence of the
Euclidean Cost function to minimize:

C(i) =
1

2

∑
f,t

(Y (f, t)− X̂(f, t))2+

`n
∑
k,t

Hn(k, t) + `s
∑
m,t

Hs(m, t).
(24)

The regularization parameters `s and `n determine the degree
of sparsity in the activity matrix. Dn, the dictionary of the un-
desired component, is left unchanged by this algorithm because it
is predefined and fixed by the previous training stage; moreover,
we do not seek a sparse code for the fixed dictionary, but the code
that minimizes the reconstruction error, setting `n = 0. In general
λn, `s, k and m are depending on unknown sources. In our ex-
perimental datasets, good results were obtained for λn = 0.2 and
`s = 0.05, k = 256 and m = 256, confirming in a wider field of
application the results of Schmidt et al. [11].

2.5. Perceptual Suppression Rule

The output of the two previous stages are the estimation of Ds,
Hs, Dn and Hn; we can estimate the spectrogram of the target
source and interference in target-present frames as:

X̂s = DsHs (25)

X̂n = DnHn (26)

The target waveform could be reconstructed by means of STFT−1

of X̂s, using the phase information of the observed signal. Un-
fortunately, this techniques return a non-flexible, poor quality au-
dio waveform. A more flexible and better quality result can be
obtained using a noise suppression rule, a well known technique
in speech enhancement and audio denoising in general. A sup-
pression rule may be viewed as a non-negative real-valued time-
frequency-varying gain G(f, t), applied to the observable, target-
present signal spectrum Y (f, t), in order to estimate the target
source spectrum:

Ŝ(f, t) = G(f, t) • Y (f, t) with 0 ≤ G(f, t) ≤ 1 (27)

In the previous equation, G(f, t) = G[SNRPrior(f, t)] depends
on the a priori SNR, i.e., the true (but unknown) target to inter-
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ference ratio. We have a good estimation of both target and in-
terference sources, provided by Eq. 25 and 26. The function that
minimizes the mean squared error of the estimate’s time domain
reconstruction, when the additive interference is modeled as an
uncorrelated, Gaussian random variable, is implemented by the
following Wiener-type function:

G(f, t) =
X̂ν
s (f, t)

X̂ν
s (f, t) + X̂ν

n(f, t)
(28)

In the previous equation, ν is a positive time-frequency parameter
that controls the suppression rate at very low SNR, In particular,
a great attenuation is applied when ν is high and SNR � 0dB.
For ν = 2, we obtain the classical Wiener filter, for ν = 1 we
have the square-root Wiener filter. Although in many cases, with
high SNR, we can get a good reconstructed target source by means
of the Wiener filter, in low SNR we get increasing target distor-
tion and perceptually annoying musical noise (a tonal, random,
isolated, time-varying noise). Generally speaking, we can reduce
noise suppression in favor of better audio fidelity or speech in-
telligibility introducing the masking phenomenon of the human
hearing model to calculate a noise masking threshold from the es-
timated target source. A listener tolerates additive interference, as
long as its energy remains below the masking threshold defined
by the target source energy, and we don’t need to suppress this
masked interference because it is non-audible. In this sense we
suppress only the non-masked excess of interference.

A widely used, simple but effective masking model was pro-
posed by Johnston [12]. In this model, a weak interference at a
certain frequency is made inaudible by a stronger target occurring
simultaneously (i.e., in the same frame) within the same perceptual
frequency range, termed Critical Band, and across Critical Bands,
applying a convolution with a spreading function. The Johnston’s
masking threshold calculation does not take into account backward
or forward temporal masking. A recent technique [13], shows that
forward temporal masking models outperform the classical and si-
multaneous masking-based technique in audio enanchement PESQ
objective evaluation, whereas, in subjective evaluation, its perfor-
mance is aligned to other audio enhancement techniques.

An interesting suppression rule based on Johnston’ simulta-
neous masking threshold T (f, t) is the Audible Noise Suppres-
sion algorithm proposed by Tsoukalas, Mourjopoulos and Kokki-
nakis [14]. The rule is based on a psychoacoustic derived quantity,
named audible noise spectrum An(f, t), and defined as the differ-
ence between the audible spectrum of the observed signal and the
audible spectrum of the target source:

An(f, t) = Ax(f, t)−As(f, t) (29)

In particular, An(f, t), the noise spectral components lying above
the masking threshold, will be suppressed by the algorithm.

Let us express An(f, t) in relation with the power spectrum
of the target source Ps(f, t), the observed signal Px(f, t), and the
masking threshold T (f, t). We can write:

An(f, t) =



Px(f, t)− Ps(f, t)
if Px(f, t) ≥ T (f, t) and Ps(f, t) ≥ T (f, t) (I)
Px(f, t)− T (f, t)

if Px(f, t) ≥ T (f, t) and Ps(f, t) < T (f, t) (II)
T (f, t)− Ps(f, t)
if Px(f, t) < T (f, t) and Ps(f, t) ≥ T (f, t) (III)
0

if Px(f, t) < T (f, t) and Ps(f, t) < T (f, t) (IV)
(30)

In cases III and IV, there is no audible noise present because
Px(f, t) < T (f, t). In this case we do not need to enhancePx(f, t).
In case II,An(f, t) is always positive or zero and the audible noise
needs to be suppressed. In case I, An(f, t) may be positive, zero
or negative; therefore, the objective of this algorithm is to modify
Px(f, t) when cases I and II happen, so that the modified audible
noise spectrum, denoted with Ãn, must satisfy the condition:

Ãn(f, t) ≤ 0. (31)

The audible noise spectrum is minimized according to the fol-
lowing parametric nonlinear Wiener-like function, which allows
great flexibility in the gain control:

G(f, t) =
Xν(f, t)

aν(f, t) +Xν(f, t)
(32)

In the previous equation, X(f, t) is the observed signal spec-
trum, a(f, t) is a positive time-frequency varying threshold, below
which all frequency components are heavily suppressed. Suppres-
sion remains relatively constant at low SNR values. In contrast,
both Spectral Subtraction and Wiener filtering algorithms provide
progressively heavy attenuation at very low SNRs. This is an im-
portant fact in favor of this method, since loss of intelligibility of
speech or naturalness of audio after noise removing is mainly due
to aggressive suppression of target source components. In [14],
the authors rigorously derived the estimation of the most flexible
parameter a(f, t), while suggested to put ν = 1 for simplicity. We
report here only the final equation implemented by the algorithm
as used in our framework:

a(f, t) = max{aI(f, t), aII(f, t)} (33)

where

aI(f, t) = Px(f, t)
[
Px(f,t)

P̂s(f,t)
− 1
]
1/ν (34)

aII(f, t) = Px(f, t)
[
Px(f,t)
T (f,t)

− 1
]
1/ν . (35)

Worth to note that it is not desirable to estimate the parameter
a(f, t) for every spectral component f , since the estimation will
be very sensitive to specific spectral value. Moreover, the Critical
Bands are perceptually meaningful frequency regions and will be
used to compute the optimum psychoacoustic solution satisfying
Eq. 31.

Also note that, in Eq. 32, we used the observed signal spec-
trum X(f, t) to compute the suppression rule, as documented in
[15]. In [14], the same authors suggest to use the power spectrum
of the observed signal Px(f, t), which allows for an improved in-
terference suppression, causing more target source distortion that
may reduce the naturalness and fidelity of the enhanced audio or
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intelligibility of speech. The use of Johnston’ simultaneous mask-
ing threshold estimation allows the construction of effective and
sophisticated perceptual noise suppression rules. However, if the
threshold is not correctly estimated, performance greatly suffers in
terms of very annoying musical noise injected in the target source
waveform, compromising any noise suppression rule. To properly
estimate the threshold, we need an extremely accurate estimation
of the target source spectrum X̂s(f, t) that we obtained with NMF.

3. OBJECTIVE QUALITY MEASURE IN SPEECH
ENHANCEMENT

During software development, extensive measures were conducted,
in particular, on speech enhancement test sentences, where the
original source sentences are also available. Since we developed a
psychoacoustic technique, a natural speech quality measure choice
was the Perceptual Evaluation of Speech Quality (PESQ), defined
by ITU-T recommendation P.862 [16]. This measure has been re-
cently widely used to predict a Mean Opinion Score, rated between
0.5 (bad overall quality or very annoying distortion) to 4.5 (excel-
lent overall quality or imperceptible distortion). We report here
only a recent test result, showing the performance of four algo-
rithms:

1. GTM: Gunawan Temporal Masking approach [13],

2. lMMSE: Ephraim and Malah approach [10],

3. SM: our algorithm with Tsoukalas Spectral Magnitude ap-
proach,

4. PSM: our algorithm with Tsoukalas Power Spectral Magni-
tude approach.

applied to four English sentences (courtesy of T.S. Gunawan):
FS10 (Female Speech corrupted with Subway Noise @10dB SNR),
FS05 (Female Speech corrupted with Subway Noise @5db SNR),
MB10 (Male Speech corrupted with Babble Noise @10dB SNR),
MB05 (Male Speech corrupted with Babble Noise @5dB SNR).

GTM was chosen because it is a new promising perceptually
motivated forward temporal masking method [13], which reaches
a high score in PESQ tests, while lMMSE performs consistently
best among classical speech enhancement algorithms as shown in
a subjective quality comparison [17] .

Results of our objective PESQ scoring are shown in Tab. 1,
while audio samples are available in http://dialogo.fisica.
uniud.it/BASS/ComparisionWithGunawan09. Indeed,
PESQ rates correctly the de-noise quality of enhanced speech. Un-
fortunately, the relation between speech quality and intelligibility
is not well understood. While one intuitively would state that a
better quality would imply a better intelligibility, the contrary can
also be true. In our case, for instance, informal listening tests show
that the high quality score of PSM is penalized in naturalness and
intelligibility, confirming that PESQ measure can not substitute a
formal subjective evaluation test (see Sec. 4, where the results of a
perceptual test are shown).

4. ASSESSMENT

To validate the system, a listening test was organized. As audio
material, several sound documents of ethnic music were consid-
ered.

Material. Four music pieces recorded in Shellac disc were
used. In order to minimize fatigue and maximize attention by

Table 1: Objective evaluation

Sentences GTM lMMSE SM PSM
FS10 2.61 2.06 2.39 2.75
FS05 2.30 1.74 2.07 2.43
MB10 2.70 2.53 2.66 2.81
MB05 2.46 2.18 2.28 2.50

the participating subjects, we selected the 20 first seconds of each
stimulus. Since the task was more a comparison than an individual
analysis, those short extracts seemed to be sufficient.

1. Chi campa deritto campo aflitto (Who lives honestly lives
poorly, by Perrocato and Canoro), Eduardo Migliaccio (voc)
- 78 rpm 10" Victor 14-81712-B (BVE 46692-2), rec. in
New York, August, 14, 1928, length 3’36". In the excerpt
considered: singing voice and music.

2. Il funerale di Rodolfo Valentino (The funeral of Rodolfo
Valentino), Compagnia Columbia (2 male singers, 2 female
singers, bells and Orchestra) - 78 rpm 10" Columbia 14230-
F (w 107117 2), rec. in New York, September, 1926, length
2’55". In the excerpt considered: speech voices.

3. La signorina sfinciusa (The funny girl), Leonardo Dia (voc),
Alfredo Cibelli (mandolin), unknowns (2 guitars) - 78 rpm
10" Victor V-12067-A (BVE 53944-2), rec. in New York,
July, 24, 1929, length 3’20". In the excerpt considered:
singing voice and music.

4. Sta terra nun fa pi mia (This land is not for me, by R.
Gioiosa, arr. R. Romani), Rosina Gioiosa Trubia (voc), Al-
fredo Cibelli (mandolin), unknowns (2 guitars) - 78 rpm
10" Brunswick 58073B (E 26621/2), rec. in New York,
February, 23, 1928, length 3’22". In the excerpt consid-
ered: singing voice and music.

Restoration of the noisy stimuli was performed by means of
the algorithm, based on the Extended Kalman Filter, detailed in
[18] (in de-click mode), then using the our SM algorithm, as well
as the following commercial products:

1. X-Noise of Waves Restoration bundle (Waves V6 Update
2);

2. Denoiser (enable its Musical noise suppression filter) of
iZotope RX v1.06;

3. Auto Dehiss of CEDAR Tools;
4. Adobe Audition 3.0;
5. Audacity 1.3.6 (an open source software for recording and

editing audio signals).
The CEDAR Tools plug-ins are used in a Pro Tools HD sys-

tem. The parameters used to control the different systems were
subjectively set to obtain the best tradeoff between noise removal
and music signal preservation. In this way 24 restored stimuli were
produced.

Test method. The tests were conducted using the EBU MUSHRA
test method [19], which is a recommended evaluation method adopted
by ITU [20]. This protocol is based on the “double-blind triple-
stimulus with hidden reference” method, which is stable and per-
mits accurate detection of small impairments. An important fea-
ture of this method is the inclusion of the hidden reference and of
two bandwidth-limited anchors signals (7 kHz and 3.5 kHz).
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The noisy stimuli under test are all real-world signals. This
implies that we can not compare test enhanced sound with a high
quality reference sound (graded 5.0 at the top of the grading scale),
but with the noisy reference sound (graded 0.0). Moreover, nega-
tive scores are allowed to evaluate test sounds that rate worse then
the noisy reference. At least the hidden reference must be graded
0.0 by the evaluator. All the other test stimuli and hidden anchors
can be evaluated subjectively to rate the overall quality of sound
excerpts.

Training phase. The purpose of the training phase, according
to the MUSHRA specification, was to allow each listener: i) to
become familiar with all the sound excerpts under test and their
quality-level ranges; ii) to learn how to use the test equipment and
the grading scale.

Listeners. Two subject groups were selected:

1. Musically trained (MT): 6 researchers of the University of
Padova and 12 students of the Conservatorio of Music “Ce-
sare Pollini" of Padova.

2. Musically untrained (MU): 9 students in Multimedia Com-
munication (University of Udine) and 9 students in Infor-
mation Engineering (University of Padova).

Equipment. The audio signals were recorded at 44.1 kHz/24
bit (uncompressed sound files) and played through Apple iMac
Intel Core 2 Duo with 2 GB 800 MHz DDR2 SDRAM (D/A con-
verter: RME Fireface 400), and headphones (AKG K 501). The
listeners could play in any order all the stimuli under test, includ-
ing the hidden reference and the two bandwidth-limited anchor
signals.

Test duration. The training session for each listener took ap-
proximately 1 hour, including an explanation about the tests and
equipment, and a practice grading session. The grading phase con-
sisted of 4 test sessions (one for each music piece), each one con-
taining 9 test signals (1 noisy signal, 6 restored signals, 2 anchors).
Each session took, on average, about 8 minutes. Subjects were al-
lowed a rest period between each session, but not during a session.

Main results. The statistical analysis method described in the
MUSHRA specification was used to process the test data. The re-
sults are presented in Tab. 2 as mean grades. The results from three
listeners (all of them belong to MU group) were removed because
the mean of their rates (in absolute value) on hidden references is
greater than +/− 0.5.

In Il funerale di Rodolfo Valentino (a speech signal) CEDAR
and our tool achieved the best scores in both perceptual experi-
ments (with MT as well as MU listeners). In general the only three
systems with a score > 2 are our Tool, CEDAR and iZotope RX.
The quality range between the best and worst restoration system is
only 1.21.

Discussion. It is possible to make some important comments:

• All the restoration algorithms work quite well (i.e., the user’s
evaluation is good enough) with speech signals: see the
scores achieved with the Il funerale di Rodolfo Valentino.
In the authors’ experience, in this case the listeners put their
attention on the speech intelligibility, and this is enhanced
with the restoration process. On the contrary, if there is
singing voice or music, the focus is on the naturalness of
the signal; typically, the noise reduction systems reduce the
non harmonic part of the source and this fact can be inter-
preted as an artifact.

• The behaviors of the two listener groups are very different.
The scores achieved by the restoration tools are very high in

the case of musically untrained subjects (3.05 higher for our
tools). Moreover, the anchors achieved scores 0.92 (7 kHz)
and−0.83 (3.5 kHz) by the MU group;−2.69 (7 kHz) and
−4.92 (3.5 kHz) by MT group. Probably, the musicians
put attention on the noise (non harmonic part in the music
signal and/or natural carrier noise): on the contrary, the un-
trained prefer a perfect clean signal, in which the harmonic
information is evident.
This result explains the importance to develop different tools,
in relation to the aim considered.

Table 2: Mean for restored stimuli and anchors, 34 subjects. Stim-
uli: S1 = Chi campa deritto campo aflitto; S2 = Il funerale di
Rodolfo Valentino; S3 = La signorina sfinciusa; S4 = Sta terra nun
fa pi mia. MT = Musically trained; MU = Musically untrained.

[Grand averages]
Restoration
system

MT
group

MU
group Average

Our Tool +0.80 +3.85 +2.33
CEDAR Tools +1.97 +3.97 +2.98
iZotope RX +1.10 +3.42 +2.26
Waves +0.88 +2.93 +1.90
Audacity +0.12 +2.43 +1.27
Adobe Audition +0.12 +2.13 +1.12
Anchor 7 kHz −2.69 +0.92 −1.02
Anchor 3.5 kHz −4.92 −0.83 −2.87

[Musically trained: 18 subjects]
Restoration
system S1 S2 S3 S4
Our Tool −0.30 +2.85 +0.70 −0.05
CEDAR Tools +1.20 +2.70 +2.25 +1.72
iZotope RX +0.50 +1.70 +1.65 +0.55
Waves +0.40 +1.55 +1.40 +0.15
Audacity −0.10 +1.20 +0.20 −0.80
Adobe Audition −0.10 +1.35 +0.05 −0.80
Anchor 7 kHz −3.50 −1.25 −3.00 −3.00
Anchor 3.5 kHz −5.00 −4.67 −5.00 −5.00

[Musically untrained: 15 subjects]
Restoration
system S1 S2 S3 S4
Our Tool +3.10 +4.85 +4.30 +3.15
CEDAR Tools +4.20 +3.70 +4.25 +3.72
iZotope RX +3.40 +3.70 +3.40 +3.17
Waves +2.30 +3.55 +3.45 +2.43
Audacity +2.60 +2.25 +2.20 +2.68
Adobe Audition +1.60 +2.55 +2.25 +2.13
Anchor 7 kHz +0.50 +1.00 +1.50 +0.67
Anchor 3.5 kHz −1.00 +0.00 −1.00 −1.33

5. CONCLUSIONS

This study is focused on the restoration of single channel audio
recordings of ethnic music. The problem of enhancing audio de-
graded by noise remains largely open, even though many signifi-
cant techniques have been introduced over the past decades. This
problem is severe when no independent information on the nature
of noise degradation is available, in which case the enhancement
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technique must utilize only the specific properties of given audio
and noise signals. This is the most difficult task, because the noise
and the speech are in the same channel. Many approaches have
been reported in the literature: the most popular method, with
many variants, is Short Time Spectral Attenuation (STSA). Al-
though this method reduces the noise and improves the SNR, it
mostly tends to introduce signal distortion and a perceptually an-
noying residual noise usually called musical noise (a special term
for short sinusoids – tones – randomly distributed over time and
frequency). It occurs due to imperfections in the original spectral
subtraction technique and statistical inaccuracy in noise magnitude
spectrum estimation.

In this paper we investigate the use of the Non-negative Ma-
trix Factorization (NMF) method as an alternative to the STSA for
the digital curation of musical heritage. We show that NMF is
a suitable technique to extract the clean audio signal from unde-
sired non stationary noise in a monaural recording of ethnic mu-
sic. More specifically, we introduce a perceptual suppression rule
to determine how competitive is the perceptual domain, compared
to the acoustic domain. To evaluate the proposed approach, both
objective and subjective audio enhancement experiments were car-
ried out (see Sections 3 and 4). The results of these experiments
show that the proposed method results in improved audio quality
and that it is a useful alternative to the classical STSA methods.

Future work (i) will investigate the use of other advanced psy-
choacoustic models and (ii) will carry out an intensive application
of this audio restoration environment on a real archive of ethnic
music phonographic discs.
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