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ABSTRACT

We propose a strategy for integrating descriptor-driven transforma-
tion into mosaicing sound synthesis, in which samples are selected
by taking into account potential distances in the transformed space.
Target descriptors consisting of chroma, mel-spaced filter banks,
and energy are modeled with respect to windowed bandlimited
resampling and mel-spaced filters, and later corrected with gain.
These transformations, however simple, allow some adaptation of
textural sound material to musical contexts.

1. INTRODUCTION

New descriptors for describing sonic and music content are con-
tinually developed. There is a clear trend and demand for using
these descriptors as controls for sound synthesis and transforma-
tion. For example, their use allows example-based processing, in
which controls are derived directly from an example target.

Mosaicing is a type of example-based synthesis in which sam-
ples can be selected and assembled to reconstruct that target. In
some cases, we would use mosiacing to transfer a sonic texture
using the target as a kind of structure. However, if a texture has a
small coverage of the overall descriptor space (kind of the idea of
texture) then most matches with the target descriptors will be bad.
This is especially true for relatively small source databases.

Descriptor-Driven transformation, in which input samples are
transformed with respect to target descriptors, offers a possible
strategy for overcoming this limitation. By expanding the source
database into a space of potential transformed samples, we aim to
allow better matches in the final mosaic.

1.1. Mosaicing
Many forms of mosaicing can be thought of as matching processes,
in which each unit (sample) of a segmented target sequence is
paired with a corresponding source unit, creating a sequence of re-
trieved units. In some systems the units are small uniform-length
segments corresponding to frames, while other systems use higher-
level divisions such as units segmented by score alignment, by on-
set detection, or by beat detection.

We call those criteria that help us decide between potential re-
trieved sequences. Criteria are commonly expressed as cost func-
tions or probabilities. Perhaps the primal criteria are target crite-
ria, which measure the quality of the match between paired target
and source units. Systems that perform basic matching based on
target criteria only include Soundmosaic [1], MATConcat [2], and
that of Jehan [3].

Perhaps the first system to address unit selection by descriptor
in musical sound synthesis would be an early version of Caterpil-
lar [4]. It adapted the Viterbi algorithm for minimizing path cost
from Concatenative Speech synthesis, where criteria are limited to
target criteria and concatenation costs (local differences between
source units in sequence). Further development [5] brought en-
hancements such as the inclusion of a variety of descriptors and
specific modifications for musical speech synthesis.

∗We thank Sašo Muševič for insightful comments on this work.

Zils and Pachet [6] propose global criteria on the retrieved se-
quences that seem to be incompatible with Viterbi path search.
They introduce a modified formulation of mosaicing as a soft1

Constraint Satisfaction Problem, and apply a local search method
known as Adaptive Search [7], also later adopted in Caterpillar.

Hoffman et al [8] propose one of the first mosaicing systems
to consider the superposition in time (mixing) of units. In our
matching analogy, superposition means that each target unit may
be matched with several source units with different weights or
gains. Criteria are expressed in their system by a temporal Bayes
net (an example of criteria expressed as probabilities). Gibbs sam-
pling then provides an estimate of the best solution.

In this work, we implement several modes that can be seen as
simplifications of the archetypal mosaicing system types above: a
basic mode with only target criteria, a sequence mode that adds lo-
cal sequence constraints, and a simplified superposition mode. All
modes match and transform units based on perceptually motivated
descriptor domains.

1.2. Descriptor-Driven Transformation
As in mosaicing, descriptor-driven transformation is also based on
target criteria; but in this case, input units are transformed to re-
semble more the target. Most systems are composed of some fixed
process controlled by parameters (possibly time-varying) that are
chosen according to the inputs and target descriptors. Descriptor-
driven transformations can thus be characterized by what kind of
process they use, and how parameters are chosen.

With some processes, parameters can be chosen that corre-
spond directly to target descriptors. This will be referred to as
direct modification. The alternative is parameter search in which
a range of parameters are evaluated against criteria. Search can be
further characterized by whether information about the parameter
space comes from predictive models of the process (model search)
or black-box Synthesis-Analysis (SA) queries, or both.

One framework allowing for direct modification transforma-
tions is Analysis-Synthesis, in which one estimates parameters of
the input for a synthesis process, modifies some of these param-
eters based on the target, and then resynthesizes the sound using
the modified parameters. Many classic transformation techniques
follow this approach, such as pitch and time stretch modifications
by the phase vocoder [9], harmonic models such as SMS [10], and
other source-filter based modifications [11].

Park et al. propose a large battery of transformations desig-
nated by the authors as Feature Modulation Synthesis [12]. These
transformations are designed to modulate specific descriptors and
use mostly a direct modification approach. By contrast, recent
works based on model search include that of Coleman and Bonada
[13], which uses spectral moments to drive resampling and filter-
ing, and that of Caetano and Rodet [14], which interpolates spec-
tral envelopes in a descriptor space of spectral moments in the in-
terest of perceptual smoothness.

1In a standard CSP, all constraints must be met for a valid solution. In
soft CSP, each constraint has an attached cost, and in the referenced work,
this cost is further distributed among retrieved units.
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The following works in descriptor-driven synthesis illustrate
design alternatives. One recent system based on model search is
that of Mintz [15], in which MPEG-7 instrumental descriptors are
used to drive a harmonic+residual synthesis process. Linear pro-
gramming is used for parameter selection. By contrast, systems
proposed by Hoffman [16] and Yee-King and Roth [17] primarily
use SA queries for measuring distance and genetic algorithms as
the search method.

2. SYSTEM OVERVIEW

We outline a mosaicing system under development that is based
on augmenting sample retrieval with model-based transformation.
Sequences of target units that correspond to uniform-length frames
are matched by choosing source units and transformation parame-
ters that adapt them to target contexts.

The target and source units are uniformly segmented and an-
alyzed from a target file and from one or more source files that
define the source database or corpus. They are then described by
descriptor vector sequences b1..K (target) and s1..S (source).

The system functionality is divided into modes with differing
criteria and methods; such division can be seen as the result of
mutual incompatibility between certain criteria and methods. In
the basic and sequence modes, each target unit is matched with a
single source unit nk and a transformation parameter vector pk. By
contrast, in the superposition mode, multiple transformed source
units (a weighted set of associated source indices and parameter
vectors) are used to reconstruct a single target unit. In this case,
we write the mth element of the set of Mk matched with the kth
target unit as the tuple um

k = (wm
k , n

m
k , p

m
k ) of weights w, source

indices n, and parameter vectors p. For each mode, we attempt to
minimize a sum of cost functions relevant to that particular mode,
described in Section 2.3.

In general, we use models t̂(x, p) to predict descriptors of
transformed units rather using the transformations t(x, p) to test
potential parameters. We do this to reduce the computational cost
of queries in search, in exchange for some deviation of predicted
descriptors from the true ones that we refer to as model error.

A process overview is given in Figure 1. Next, we will explain
the descriptors used for control, the transformations available, and
the criteria that allow us to choose between sequences. We will
reserve detailed discussion of the models, a key aspect of our ap-
proach, for the following section.
2.1. Descriptors
The choice of descriptors (along with other aspects of criteria) will
influence the resemblance of target to output in descriptor-driven
systems. We have chosen a compact set which describe the fol-
lowing with regard to short time segments: the tonality, the timbre,
and the loudness. (Short-time, hence any rhythmic properties must
be described as sequences of these static descriptors.) In addition,
source file and frame indices are included as auxiliary descriptors
for retrieval and to support the contiguity criteria.

We measure the tonality of units with a chroma vector
−→
ch,

which is computed by assigning energy from the power spectrum
to 36 chroma bins(3 per semitone) in a limited frequency range.
In this application, chroma is treated as a relative distribution over
energy, for which we divide the value in each bin by their sum.

We measure the shoft-time timbre with mel-spaced filter banks
−→
fb, often used as a front-end to MFCCs. They are computed by as-
signing energy from the power spectrum to 40 mel-spaced bins of
equal mel-width. As with chroma, the filter bank can be expressed
as a weighted sum of spectral energy, which we treat equally as a
normalized distribution.

We measure loudness with energy e, a low-level descriptor rel-
evant in the time and spectral domains.

Chroma, timbre, and energy each exhibit approximate linear-
ity, that is, the descriptors of a sum of units tend toward the sum
of descriptors. This assumption is important for the superposition
mode, and is validated alongside the models in Sec. 3.3.

2.2. Unit Transformations

A small initial set of three transformations is currently supported,
based on the available models. Bandlimited resampling is a basic
transformation that stretches or shrinks a signal in time by a factor
L, and stretches or shrinks the spectrum by the inverse of that fac-
tor. In the chroma domain, it has an effect of tonally transposing
by tp = − log2 L octaves, to be detailed in Section 3.1.

That bandlimited resampling is a length-changing transforma-
tion complicates prediction. To limit the temporal scope of the
composited unit, we window both before and after resampling.

Overlapping mel-spaced triangular filters modulated by a vec-
tor of gains −→g complement the timbre representation by allowing
near-direct modulation of the timbre. However, due to limited res-
olution of the mel-spaced filter banks, only smooth filters are per-
mitted, so costs are imposed according to a measure of smoothness
(see Section 3.2 on filter smoothness).

Gain is used to directly adjust the energy of segments. Since
chroma and mel-spaced filter banks are expressed as distributions
over energy, they are invariant to gain.

2.3. Criteria

The criteria in this system are each expressed by cost functions
that are weighted and summed for the total cost. Different criteria
are available according to mode.

We classify criteria into target criteria, which concern the re-
lationship between matched units, and sequence criteria, which
concern relationships in the retrieved sequence and parameter se-
quence. Furthermore we designate local those that concern adja-
cent or small groups of adjacent units.

Distances Distances are functions d(x1, x2) that dictate unit sim-
ilarity in descriptor space for target and continuity criteria. In gen-
eral we are free to use any kind of function or vector norm. How-
ever, the superposition mode is currently limited by the regularized
least-squares method to using the l2 norm on chroma and timbre.
In all modes, we can weight the relative importance of chroma,
timbre, and energy with weights λch, λfb, and λe.

Target distance for basic and sequence modes In the absence
of superposition we simply use the distance between correspond-
ing target and retrieved units:

TD(n1..K , p1..K) =

B∑
k

d(t(snk , pk), bk) (1)

Target distance for superposition Recall that the superposition
mode matches multiple source units (and multiple parameters and
associated weights) to each target unit. We therefore must measure
how well the combination, in this case the weighted sum, matches
the target unit. The adapted cost function is as follows:

TDSup(u1..K) =

K∑
k

d

(
Mk∑
m

wm
k t(snm

k
, pmk ), bk

)
(2)

Note we are summing the descriptors of superposed units, which
amounts to an assumption of linearity.

Retrieval and parameter criteria We may prefer a priori cer-
tain subsets of source units or of the parameter space. For example,
using time-varying weights on source files such as in Loopmash
[18] allow transitioning between different material. In terms of pa-
rameters, we may wish to avoid parameters with high model error
(e.g. deriving cost from incurred model error). For these reasons
we impose unit costs UC and parameter costs PC.

The parameter costs currently imposed for the system are a
cost related to the tonal transposition: PCtp = λtp

∣∣∣ tp
tpmax

∣∣∣, and a

cost related to the filter roughness: PCfg = λf
|D−→g db|22
Rmax

, where D
is the local difference between adjacent filter gains in db andRmax

is the maximum roughness in a list of cantidates (Section 4).
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Figure 1: An visual overview of the system. An analysis frontend extracts target descriptors, then used to select units and transformation
parameters according to distance from the target and other criteria. The results are then synthesized by retrieving the selected units,
transforming them with the selected parameters, and overlapped using synthesis windows. * multiple synthesis blocks denote separate
retrieval and transformation for superposed units.

Local sequence criteria We refer to local changes in retrieved
descriptors or parameters as continuity, and the retrieval system to
choose subsequences of the source sequences as contiguity. We
choose a contiguity cost function CgC that allows (with a light
penalty) stepping a few units forward, while heavily penalizing
jumps regardless of the size of the jump. Likewise, for subse-
quences of contiguous units made of steps only, we impose a sim-
ilar parameter continuity cost PCn on changes in transposition tp.
Sparsity in superposition To better preserve source qualities,
one may prefer a small set of matched elements. Set size can be
measured in a vector function of w known as sparsity. Perhaps
the primal sparsity measure is known as l0 (|w|0), the number of
nonzero elements in w. Due to computational intractability of the
optimization procedure, it is often substituted by the l1 norm, ie
|w|1 =

∑
i |wi| the absolute sum of all of the weights.

Total costs for the modes can be summarized as follows:
TCBas = TD + UC + PC
TCSeq = TD + UC + PC + CgC + PCn

TCSup = TDSup + UC + PC +
∑

λ|wk|1.
3. TRANSFORMATION MODELS

A model is a function t̂ : X × P → Y that predicts output de-
scriptors from Y using input descriptors from X and parameters
from P for the transformation t. To fully predict target distance,
we must predict all target descriptors with non-zero weight in d.
3.1. Resampling

Bandlimited resampling linearly scales locations in frequency in
cases where the output frequency is below fN , the Nyquist fre-
quency. That is, a sinusoid previously at frequency f will be re-
located to f

L
in the output. To predict spectral descriptors under

resampling, we map this scale relationship to descriptor domains.
Chroma The usual mapping from a frequency f to K chroma
bins can be described as: kf = mod(K log2

f
f0
,K) given a ref-

erence frequency f0. By substituting the scaled frequency f
L

from
resampling in chroma bin assignment, we see that energy remain-
ing in the chroma region is shifted by −K log2 L chroma bins.
This can be stated by the circular shift function:

t̂(
−→
ch, L) = shift◦(

−→
ch,−K log2 L) (3)

Mel-spaced filter bank Using our mapping to mel bands we can
linearly interpolate (denoted with square brackets) at the center
frequencies of the filters fi to get a prediction.

t̂fi(
−→
fb, L) =

−→
fb

[
m

(
f

L

)]
(4)

Energy Energy changes under the windowed resampling vary
per unit according to both the spectral energy distribution and the
temporal energy distribution. Rather than trying to account for
the temporal and spectral effects separately, we find it simpler to
use a piecewise linear regression based on SA queries. That is, in
the Analysis phase we estimate 3 energy ratios: SAR0, the double
windowed unit with no resampling, SAR−1, the same unit down-
sampled by an octave, and SAR1, the same unit upsampled by an
octave (all in relation to the energy e(x) = ‖wa · x‖2):

SAR0(x) = ‖wa ·c (ws · x)‖2/e(x) (5)

SAR−1(x) = ‖wa ·c resamp (ws · x, 0.5)‖2/e(x) (6)

SAR1(x) = ‖wa ·c resamp(ws · x, 2)‖2/e(x) (7)

where wa and ws are analysis and synthesis windows, ‖x‖2 de-
notes temporal energy of x, w ·x denotes pointwise multiplication
(windowing), andw ·cx denotes centered pointwise multiplication
where x is cut or zero-padded symmetrically to match the length
ofw. To predict the energy with an arbitrary resampling factor, we
linearly interpolate between known samples {SAR−1,0,1}:

t̂(e, SAR, L) = e · SAR [− log2 L] (8)

This approach logically extends to piecewise linear interpola-
tion of larger grids of SA queries. One difference between this
model and the vector models for chroma and timbre is that this
model does not generalize over units—each unit can be thought of
as having its own model. In practice we can think of the queries
as additional descriptors. Since a small fixed number of queries
can be performed for each unit at analysis time, SA queries are
unnecessary during search time.
3.2. Filters
The timbre representation consists of filter banks of spectral en-
ergy, the filters apply gain directly to these, so the ith band can be
predicted as:

t̂(fbi, gi) = fbi
√
gi (9)

The accuracy of this prediction can be related to the smooth-
ness or roughness of the filter and is treated below. The effect of
filtering on the chroma is not modeled, but the effect in terms of
additional error is measured empirically.
3.3. Accuracy of Models
For a rough comparison of the accuracy of the various models, we
test them against SA queries on a small database of at least 1000
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Chroma Timbre Energy
Resampling (avg) 0.123 0.362 0.155

src1 (electronic) 0.087 0.310 0.112
src2 (vocal formants) 0.106 0.206 0.123
src3 (singing voice) 0.115 0.409 0.140
src4 (commercial pop) 0.143 0.436 0.122
src5 (impact sounds) 0.177 0.468 0.327
src6 (orchestra) 0.087 0.353 0.113

Filtering 0.228 0.206 5.882
Sum 0.106 0.263 0.189

Table 1: Accuracy of resampling models (l1, l1, db) compared
with the error measured when assuming linearity of descriptors.

units from various sources.
To compare the vector descriptors of chroma and timbre, a

scaled l1 vector norm is used: d(v, z) = 0.5
∑

i |vi−zi|where the
constant scales the maximum distance over distributions to unity
(when two vectors have completely nonoverlapping support). To
compare the energy, we take the absolute value in decibels between
the true value and the prediction: d(et, ep) =

∣∣∣10 log10 ep
et

∣∣∣ Table
1 shows the accurary of the predictors for resampling along with
some of the other operations.

4. UNIT AND PARAMETER SELECTION
For all modes, we predict a matrix under a grid of resampling pa-
rameters and use the predicted descriptors in the unit and parame-
ter selection, procedures for which are sketched below:

Basic In the basic mode, we loop over target units and match
source units to them independent of sequence.

When filtering is enabled, we can generate smooth filter pa-
rameters by considering a tradeoff between deviation (in decibels)

from the ideal filter fideal =
√

bfb
sfb

and the smoothness of the filter.
We use a technique known as quadradic smoothing in which the
quantity |fideal, db−−→g db|22+λf |D−→g db|22 is minimized by solving a
linear system (p312 Boyd [19]): −→g db = (I+λfD

TD)−1fideal, db,
giving us the smoothest and closest filter to the ideal. Using both
the target distance and the parameter cost based on filter roughness
we can determine the best candidates based on potential filtering.

Sequence One mode gives an approximate solution for the target
distance criteria, a contiguity criteria that allows the retrieved unit
to skip forward according to the original source without a high
cost, and a continuity criteria on the transformation parameters.

We build a non-optimal relaxation of the original problem, by
first programming a path (Viterbi) through retrieved unit space us-
ing the distance for the ideal transposition, then using that path to
find a path through transformation space.

Superposition For creating a mosaic with superposed source
units but no sequence criteria, we can solve a regularized least-
squares problem as in basis pursuit (Chen et al [20]): minw ||Aw−
b||22+λsp||w||1 using the l1_ls [21] package. We use the predicted
descriptor matrix as the problem matrix A, and weight them by
their limits. Next, we can solve the problem with a given sparsity
parameter λsp, which gives a set of gains on the units.

5. CONCLUSION
We have prepared sound examples to demonstrate the algorithms
that can be found at:
http://www.dtic.upf.edu/~gcoleman/mosaic10/.

First, objective (descriptors) and subjective (listening tests) are
needed to validate the work. Second, finding ways to avoid ex-
haustive evaluation or choosing subsets of the prediction matrix
(in superposition mode) could likely speed up the computation.
Finally, a way to combine sequence constraints with superposition

mosaicing could possibly better preserve timbre characteristics of
source material while matching a polyphonic target.
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