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ABSTRACT 

The speed of sound in air increases with pressure, causing pres-
sure peaks to travel faster than troughs, and leading to a sharpen-
ing of the propagating pressure waveform.  Here, this nonlinear 
effect is explored, and its application to brass instrument synthe-
sis and its use as an audio effect are described.  Acoustic meas-
urements on tubes and brass instruments are presented showing 
significant spectral enrichment, sometimes referred to as “brassi-
ness.”  The effect may be implemented as an amplitude-
dependent delay, distributed across a cascade of incremental de-
lays. A bidirectional waveguide, having a pressure-dependent 
delay, appropriate for musical instrument synthesis, is presented.  
A computationally efficient lumped-element processor is also 
presented.  Example brass instrument recordings, originally 
played softly, are spectrally enriched or “brassified” to simulate a 
fortissimo playing level.   

1. INTRODUCTION 

Conventional linear analysis of acoustic wave propagation as-
sumes that the speed of sound is essentially constant in the air 
medium, and digital simulations of musical wind instruments 
usually incorporate the same assumption [1, pp. 11-12].  The 
memory buffer representing a linear propagation medium pro-
duces a  time delay that is independent of the signal amplitude. 
Of the various nonlinearities producing amplitude-dependent 
spectral brightening in a brass instrument, only the pressure-
controlled valve in the excitation and feedback path is commonly 
implemented.  One exception is [2], in which an amplitude-
dependent delay was used in a waveguide algorithm for synthe-
sizing brass sounds. 
 
While the assumption of constant propagation speed is a valid 
approximation at moderate sound pressure  levels, it becomes 
unrealistic at the high levels that occur inside musical instru-
ments such as the trombone and trumpet, which can exceed 160 
dB [3, 4].  The high-pressure peaks of an acoustic waveform 
travel faster than the low-pressure troughs [5]. These propagation 
velocity differences lead to progressive waveform distortion (as 
illustrated in Figure 1), increasing high-frequency content and—
at high pressure levels and long acoustic path lengths— shock 
waves with impulsive pressure transitions.  Musical acousticians 
have documented the occurrence of both shock waves [4] and 
sub-shock spectral enrichment [6] in brass instruments, including 
the trombone. 
 
Amplitude-dependent wave propagation speed can be modeled in 
terms of the acoustic wave equation, and digitally simulated us-

ing finite element methods [7].  As developed below, the pres-
sure-dependent sound speed has the effect of a level-dependent 
time delay on traveling waves.  Tassart, et al. [8] described this 
phenomenon in the context of acoustic waves and digital 
waveguide simulations. Valimaki, et al. [9] described the applica-
tion of signal-dependent nonlinearities to physical models using 
fractional-delay filters.  Tolonen, et al. [10] proposed an ampli-
tude-dependent time delay to model the increase in pitch with 
waveform amplitude on a vibrating string. In this work, we ex-
plore both distributed and lumped implementations of an ampli-
tude-dependent sound speed. The focus here is on “physically 
informed” sonic modeling [11], suitable for digital audio effects, 
rather than precise conformity with the acoustical physics of mu-
sical instruments. The resulting algorithms are suitable for real-
time digital processing with relatively low computational com-
plexity. 
 
Signal delays varied at audio rates are capable of producing spec-
trally rich sounds. In one example, Stilson [12] modulated the 
delay in a Karplus-Strong string model with a sinusoid having a 
frequency near the string fundamental. In another example [13], 
sounds having both FM and  AM characteristics were generated  
by modulating the coefficients of spectral delay filters at audio 
rates.  Associating the varying time delay with the instantaneous 
amplitude of an input signal produces a brightening of the spec-
trum similar in character to that of a brass instrument [3].  Ac-
cordingly, the term “brassification” is used here to  describe the 
process of delaying a signal according to its amplitude. 
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Figure 1:  Waveforms of sinusoidal pressure waves at low, me-
dium and high pressure levels, after propagating the same dis-
tance. 
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In Section 2 below, the nonlinear wave equation incorporating a 
pressure-dependent sound speed is explored, and acoustic meas-
urements showing waveform sharpening are presented.  Section 3 
discusses discretization of the nonlinear wave equation.  Imple-
mentations of bidirectional waveguide sections producing an am-
plitude-dependent propagation time and aimed at brass instru-
ment synthesis applications are described in section 4.  Audio 
effects architectures employing an amplitude-dependent delay, 
and including equalized and side-chain structures, are presented 
in Section 5.  Finally, Section 6 concludes the paper. 

2. AMPLITUDE-DEPENDENT WAVE PROPAGATION 

2.1. Acoustic Wave  Propagation and Waveform Sharpening 

The one-dimensional acoustic wave equation describes the be-
havior of air pressure fluctuations p(x, t) along position x and 
time t, 
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where v(x, t) represents the speed of sound [5].  The wave equa-
tion (1) propagates disturbances along the x axis with speed 
v(x,t), which depends weakly on the local, instantaneous air pres-
sure, 
 

    

€ 

v(x, t) = c0 + β
p(x, t)
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                (2) 

where c0 represents the small-signal speed of sound in air, P0 the 
undisturbed air pressure, and β the coefficient of nonlinearity.  
 
The quantity β/P0 is positive, causing sound wave peaks to travel 
faster than troughs.  This effect progressively distorts the propa-
gating waveform, as illustrated in Figure 1, sharpening the transi-
tions between successive low-pressure and high-pressure por-
tions of the waveform.  A sound that starts off as a sinusoid will 
acquire more of a sawtooth shape, and an increasing amount of 
high-frequency content.  If the product of the sound amplitude 
and the distance traveled becomes sufficiently large, the slower 
moving trough would seemingly be overtaken by the preceding 
peak.  What in fact happens, however, is that a shock forms—an 
abrupt, nearly instantaneous, transition between trough and peak.  
 
 

 
 
Figure 2:  Multivalued (non-physical) spatial waveform at a fixed 
time that would seemingly result from a peak overtaking a 
trough. Instead, a shock transition is formed. From [5], p. 104. 
 

The shock appears near the location at which the areas of the 
fast-propagating peak ahead of the shock and the slow-
propagating trough behind the shock are balanced; this point is 
marked by xsh in the example of Figure 2.  It turns out that loss 
mechanisms in air, not included in equation (1), lead to the dissi-
pation of a shock wave after its formation [5]. 
 
As an example of the magnitudes involved, consider a sound of 
140 dB SPL, which is intense but well below the maximum lev-
els measured in musical instruments such as the trombone [4,6].  
This level corresponds to a peak-to-peak pressure fluctuation of 
679 Pa, which is nearly 0.7 percent of the static atmospheric 
pressure of 105 Pa.  In equation (2), the physical quantity β for air 
is approximately 1.2 times the nominal speed of sound, so the 
difference in speed between the peaks and the troughs of the 
waveform is approximately 0.814 percent of the average or 
small-signal speed. Over a propagation distance of 2 m  (typical 
for the trombone), this speed difference between peak and trough 
leads to an arrival-time difference of 48.7 microseconds, which is 
approximately one-fourth of the period of a 5 kHz signal.  This 
corresponds to a significant steepening of the waveform and 
brightening of the spectrum. 
 
2.2  Acoustic Measurements 
 
To confirm and quantify the occurrence of an amplitude-
dependent propagation velocity at sound levels and path lengths 
corresponding to those inside a trumpet or trombone, we attached 
a compression-driver loudspeaker (Atlas PD-30, 30 W) to a PVC 
plastic tube with inside diameter of 1.27 cm and length 3 m.  A 
microphone was placed inside the tube 2 m from the source, a 
distance roughly corresponding to the acoustic path length of a 
trombone.  Windowed bursts of several cycles of a 2.205 kHz 
sine wave were applied to the loudspeaker using a range of am-
plitudes.  The received microphone signals, seen in Figure 3(a), 
and normalized to have unit amplitude in Figure 3(b), show no-
ticeable waveform sharpening, with their peaks traveling faster 
than their troughs in a manner well approximated by equation 
(2).  The propagating waveforms experience a high-frequency 
enrichment, even at signal levels and path distances well below 
those required for shock formation. 
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Figure 3:  Acoustic waveforms of windowed sinusoidal bursts at 
three different pressure levels (top) and the same signals normal-
ized to the same level and slightly offset vertically for clarity 
(bottom). 
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3.  WAVE PROPAGATION SIMULATION 
 

3.1  Wave Equation Discretization 
 
While the wave equation (1) provides a general description of the 
behavior of the disturbances propagating in the medium, we will 
find it useful to separately consider left- and right-traveling 
waves, governed by the first-order equation pair 
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Given a pressure g(x), defined along the x axis at time t=0, and a 
wave propagating in the +x direction 
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 .       (4) 

 
Assuming β=0, corresponding to an ideal linear medium, the ini-
tial waveform g(x) is seen to travel down the x axis with speed c0.  
After a time Δt, the waveform is simply translated , intact, a dis-
tance c0 Δt.  By contrast, if β is positive, as it is for an air me-
dium, the waveform evolves as it propagates: the peaks travel 
faster than the troughs. 
 
For a pressure h(t), defined for all time at the position x=0, the 
pressure propagating along the +x axis satisfies 
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For β=0, the pressure noted at x0>0 is simply the pressure at x=0, 
delayed by x0/c0.  In the presence of β>0, the pressure at x0 is ap-
proximately the pressure amplitude at x=0, delayed according to 
its value, with peaks arriving relatively sooner than troughs. 
 
The fact that the nonlinear wave equation implies a pressure-
dependent time delay can be seen via a simple discretization of 
(4).  Consider a delay line having sample locations labeled by n, 
and containing a pressure waveform p(n,t) at time t.  Assume that 
the small-signal sound speed c0 is one sample location per sam-
ple interval, and approximate the time and position derivatives by 
first-order differences, 
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∂p
∂t

= p(n,t) − p(n,t −1) ,    (6) 
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∂p
∂x

= p(n,t −1) − p(n −1,t −1)   .  (7) 

 
A little algebra gives the delay line waveform at time step t in 
terms of its contents at time step t-1, 
 

    

€ 

p(n,t) =α p(n,t −1)+ (1−α) p(n −1,t −1)        (8) 
 
where 
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α = −β
p
P0

 .         (9) 

 
Note that when β=0, corresponding to propagation in a linear 
medium, the waveform is simply shifted intact, one sample posi-
tion for each new time step.  In general, when β is not equal to 
zero, the waveform at time t and position n is a linear interpola-
tion of the waveform at positions n and n-1 at time t-1.  The 
waveform at time t and position n, therefore, approximates the 
waveform at time t-1 in the neighborhood of location n-1, just 
before n-1 for positive pressures and just after n-1 for negative 
pressures. 
 
A similar discretization gives the pressure at position n as a linear 
interpolation of its value at position n-1 between times t and t-1, 
 

     

€ 

p(n,t) =η p(n −1,t) + (1−η)p(n −1,t −1)       (10) 
 
where the interpolation coefficient  η is 
 

       

€ 
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β
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P0

1+ β
p
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     .              (11) 

 
We again have the interpretation that the pressure at position n is 
the pressure at position n-1 delayed according to its value. 
 
3.2  Amplitude-Dependent Delay 
 
In view of the interpretation above, the amplitude-dependent 
propagation  may be implemented in discrete time as a cascade of 
amplitude-dependent elements as shown in Figure 4.  A buffer 
indexed by n contains the propagating waveform.  At every time 
step t, the waveform at position n is replaced by its value at posi-
tion   

€ 

n −1−β p
P0

 ,                                        (12) 

where a sound speed of c0 = 1 sample position per sample inter-
val is assumed. 

 
Figure 4:  Discretized unidirectional amplitude-dependent time 
delay using cascaded elements.  The arrows entering the top of 
each element represent the modulation of the element’s delay by 
the pressure at its input. 
 
 
The amplitude-dependent delay elements comprising the cascade 
in Figure 4 may be implemented in a number of ways [14, 15].  
FIR approaches are particularly simple:  The input is upsampled, 
and a low-order interpolation applied.  Linear interpolation ac-
cording to (8) or (10), or fourth-order Lagrange interpolation 
works well with modest upsampling factors such as two or four.  
The high-frequency droop present in the FIR interpolation is not 
unwelcome, as it is in some sense similar to damping mecha-
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nisms present in air, not included in (3), which affect the forma-
tion and evolution of shock. 
 
First-order allpass filtering may also be used to implement the 
needed variable delay.  There are, however, some drawbacks to 
this approach.  First, these filters are dispersive, such that when 
the low frequencies are delayed a little more than one sample, the 
high frequencies will be delayed a little less than one sample.  
Second, distortion artifacts may be introduced by audio rate 
modulation of allpass coefficients, although this too can be con-
trolled to some extent [13, 16].  Both the underlying mathematics 
and the available implementation options are generally analogous 
to those described in [10] for modeling tension-dependent non-
linearity in plucked strings. Overall, we suggest using upsam-
pling with a low-order FIR interpolator to implement the desired 
amplitude-dependent delay element. 
 
 
4.  MUSICAL INSTRUMENT SOUND SYNTHESIS  
 
4.1  Bidirectional waveguide 
 
The discretization above may be configured to implement a bi-
directional waveguide and used to simulate the bore of a wind 
instrument.  To do so, two variable delay lines propagating sig-
nals in opposite directions are used.  In an instrument bore, how-
ever, the sound speed depends on the total bore pressure, rather 
than the individual left- and right-traveling pressures.  The sug-
gested waveguide implementation is shown in Figure 5.  At every 
position along the bidirectional waveguide, the sum of the left- 
and right-going pressures is used to modulate the respective vari-
able delays. 
 

 
Figure 5: Modeling bidirectional wave propagation with ampli-
tude-dependent delay elements 
 
 
4.2  Lumped-element Simplification 
 
The complexity of the waveguide shown in Figure 5 may be re-
duced by approximating the effect of a number n of cascaded 
variable delays into a single combined variable delay of value n 
times (1+βp/P0).  Using lumped delay elements, the left- and 
right-going waves can be summed at a sparse set of locations 
along the acoustic tube to provide a delay control signal that in-
cludes the effect of the interaction between the outgoing and re-
flected waves. Only a limited number of delay locations are re-
quired, because the pressure wave inside the bore of a brass in-
strument is dominated by low frequencies [6], corresponding to 
low spatial frequencies. Alternatively, a unidirectional imple-
mentation of the variable delays may be considered sufficient, in 
view of the fact that the high-frequency signal components, 
which are the ones primarily affected by delay-time modulation, 

are largely transmitted through the instrument bell rather than 
being reflected back into the bore.  On the other hand, in detailed 
digital simulation of the trombone for synthesis appplications 
[17], it was shown that including the backward wave within the 
oscillatory feedback loop does affect the fundamental frequency 
and increase the brassiness of the synthesized output signal. 

 

 
Figure 6:  Commuting a single large amplitude-dependent delay 
to the end of a fixed delay. 
 
 
5.  AUDIO EFFECTS 
 
5.1  Lumped “Brassification” 
 
In the context of applying amplitude-dependent delay to existing 
audio signals (rather than de novo synthesis of musical sounds),  
there is little reason to model the detailed physics by implement-
ing distributed variable delays. A natural approach is to lump the 
delay processing into a single amplitude-dependent delay line, as 
shown in Figure 6.  Each new arriving signal sample, after up-
sampling to a higher rate, can be written (added) into the appro-
priate positions in the delay line using linear (or Lagrange) inter-
polation. 
 
To scrupulously model the physics of acoustic wave propagation, 
including shock fronts at high amplitudes, any samples that are 
computed to be overtaken by earlier higher-amplitude samples 
should be discarded, as described in Section 2.1.  This logic can 
be implemented in the interpolated delay line.  We have found 
experimentally, however, that omitting this feature (and instead 
interpolating and adding every input sample into the delay line 
even if it arrives “late”) results in processed sounds with a 
brighter spectrum that, in the opinion of the authors, sounds more 
musically appealing.   This may be attributable to the fact that 
acoustic shock waves correspond to energy loss, and that a larger 
amount of time-delay modulation can be applied to the signal 
when the shock-wave feature is omitted. 
 
When the shock-wave feature is omitted from the delay-line im-
plementation, the amplitude-dependent time-delay becomes 
equivalent to phase or frequency modulation (PM or FM).  The 
high-frequency harmonics of a wind instrument sound may be 
regarded as “carrier” signals that are phase-modulated by the 
dominant low-frequency pressure wave inside the bore of the in-
strument.   Phase modulation of a single carrier frequency pro-
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duces sidebands that generally increase in prominence as the 
phase excursion increases, but the relationship is not monotonic.  
Instead, according to standard PM and FM theory [18], the am-
plitude of each generated sideband is proportional to an oscilla-
tory Bessel function, resulting in a complex, smooth and musi-
cally appealing variation in the spectrum.  It is perhaps signifi-
cant that FM synthesizers are considered particularly successful 
when emulating brass instruments. 
 
 
5.2  Audio Effects Architectures 
 
Since the acoustic signal  inside the bore of a musical instrument 
consists primarily of low frequencies [6], especially the 
fundamental, it is appropriate to filter the signal so as to 
emphasize its low-frequency content.  In this way, the digitally 
simulated pressure waveform for modulating the time delay will 
correspond more closely to that inside the instrument.  After the 
amplitude-dependent propagation delay is applied, this filtering 
should be compensated by a complementary filter emphasizing 
high frequencies and corresponding, for instance, to the 
frequency-selective transmission through the flared bell of the 
horn.   

 
 
Figure 7: Equalized “brassifier” with conditioning filter before 
the amplitude-dependent delay and equalization filter after it. 
 
This architecture—an equalized “brassifier”—is shown in Figure 
7.  The filter c(z) conditions the signal to  emphasize those fea-
tures of the signal important for controlling the brassification.  
The filter q(z) provides complementary equalization chosen to be 
the inverse of c(z).  With conditioning and equalization filters  
arranged in this manner, low-amplitude signals will pass through 
the process unchanged, while high-amplitude signals will be 
brassified (spectrally brightened). 
 
Another brassifier architecture provides a side-chain signal for 
controlling the delay modification, analogous to the generalized 
time-varying fractional delay used in [10] to model string tension 
modulation.  As shown in Figure 8, a filtered version of an input 
signal is used to control the amplitude-dependent delay experi-
enced by the input.  This structure, when used with a low-pass 
side-chain filter, improves the output signal quality of the brassi-
fier while retaining the desired spectral enrichment.  Unlike the 
signal-dependent allpass technique of Kleimola, et al. [13], the 
use here of  upsampling and linear or Lagrange interpolation 
permits very large amounts of side-chain modulation to be ap-
plied without causing excessive aliasing or other undesired dis-
tortion. 
 

 
 
Figure 8:  “Brassifier” with side chain for modulation signal. 
The filter c(z) conditions the input signal, typically by emphasiz-
ing low frequencies, to produce a signal suitable for modulating 
β, the amplitude-dependent time delay. 
  
An example of the spectra resulting from using the side-chain 
architecture to process a recorded trumpet signal is shown in 
Figure 9. The sound files corresponding to these spectra and re-
lated examples are available on the World Wide Web [19]. 
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Figure 9:  Spectrum of unmodified trumpet signal (top) and  the 
processed or “brassified” spectrum (bottom). 
 
 

6.  CONCLUSIONS AND FUTURE WORK 
 
Amplitude-dependent digital signal delay, derived from concepts 
of nonlinear acoustics, has been shown to produce spectra and 
sounds that are brass-like in character.  The technique can be 
used for synthesis of musical instrument sounds in physical mod-
els, but as implemented here it is especially suitable for modifica-
tion of pre-recorded or live instrument sounds as a digital audio 
effect.   The digital implementation is capable of modeling the 
production of acoustic shock waves at high signal amplitudes, 
but substantial or even increased “brassiness” can be achieved by 
eliminating shock-wave emulation (i.e., the discarding of late-
arriving samples) and using a larger amplitude-dependent delay 
and modulation index.  When shock production is eliminated, the 
effect can best be interpreted and analyzed in terms of phase or 
frequency modulation.   
 
The suggested implementation—as a single lumped delay line 
with FIR interpolation—is free of unwanted artifacts such as 
spectral dispersion, and its low computational complexity is suit-
able for real-time applications.  As a digital audio effect or for 
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sample-based synthesis, the technique can be used to enrich the 
spectrum and modify the apparent dynamic level of a musical 
instrument sound.  The effectiveness of amplitude-dependent de-
lay in producing or enhancing brassiness suggests that this non-
linear effect is desirable as a fundamental component of physical 
models for synthesizing brass instrument sounds. 
 
Future work will include the application of this technique to non-
brass instrument sounds.  Another anticipated extension is the 
use of multi-band processing so that a modulation index large 
enough to produce audibly significant PM sidebands can be ap-
plied even to low-frequency signal components. 
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