
Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

COMPARISON OF SRP-PHAT AND MULTIBAND-POPI ALGORITHMS FOR SPEAKER
LOCALIZATION USING PARTICLE FILTERS

Tania Habib and Harald Romsdorfer∗

Signal Processing and Speech Communication Lab
Graz University of Technology

Graz, Austria
{tania.habib, romsdorfer}@tugraz.at

ABSTRACT

The task of localizing single and multiple concurrent speakers in
a reverberant environment with background noise poses several
problems. One of the major problems is the severe corruption
of the frame-wise localization estimates. To improve the overall
localization accuracy, we propose a particle filter based tracking
algorithm using the recently proposed Multiband Joint Position-
Pitch (M-PoPi) localization algorithm as a frame wise likelihood
estimate. To prove the performance of our approach, we tested it
on real-world recordings of seven different speakers and of up to
three concurrent speakers. We compared our new approach to the
well-known SRP-PHAT algorithm as frame-wise likelihood esti-
mates. Finally, we compared both particle filter based tracking
algorithms with their frame-wise localization algorithms. The M-
PoPi based particle filter tracking algorithm outperforms the SRP-
PHAT based particle filter tracking algorithm. The comparison
with their frame wise localization algorithms shows that this im-
proved performance stems from the more robust M-PoPi frame
wise localization estimate.

1. INTRODUCTION

Acoustic source localization using measurements from a micro-
phone array has been an active area of research in recent years
finding its applications in robotics, teleconferences, surveillance
and object tracking.

There exist various approaches to localize active sources in an
acoustic scene [1]. One of the most commonly used approaches is
based on the Time-Difference-of-Arrival (TDoA) method, which
is a two-step procedure. In the first step, one or several time de-
lays between different pairs of microphones (i.e., the TDoAs) are
estimated. The source position is determined in the second step
using the array geometry and TDoAs. Well-known methods in
this category are Generalized Cross-Correlation (GCC) and vari-
ants [2, 3]. In [4], the effects of reverberation on the TDoA esti-
mates of GCC have been discussed in detail. It was found in the
study that when the reverberation time reaches a certain threshold,
the method becomes completely useless. This threshold was found
to be T60 = 600 ms.

Other methods use frequency-averaged signal power of a Steer-
ing Beamformer (SB), where a steered response is generated by
steering the beamformer over a predefined spatial region. A method

∗ This research was carried out in the context of AAP-COMET, a joint
project of Graz University of Technology, Philips Speech Processing, AKG
Acoustics, and ATRONIC Austria.

combining both features of SB with the ones used for PHAse Trans-
form (PHAT) weighting of the GCC is known as SRP-PHAT [5].
One inherent problem in all these methods is that they do not
take into account any speech related property of the source, which
makes them more vulnerable to short and abrupt acoustic events
such as closing of a door and window or any spatially present non-
speech source generating noise in the room. A new, joint pitch
and position extraction algorithm, known as Joint-Position-Pitch
(PoPi) algorithm [6], has been presented recently. The term posi-
tion will be referred to as Direction-of-Arrival (DoA) for the rest
of the paper.

The PoPi algorithm combines the DoA estimates with speaker-
dependent features, which are instantaneous and therefore require
no prior knowledge or model training. One of the most obvi-
ous speaker-dependent features is the fundamental frequency F0,
which is also referred to as pitch. The PoPi algorithm allows
an acoustic source indexing in a multi-source environments, but
tends to degrade for concurrent speaker cases. To represent multi-
speaker scenarios, we further enhanced this method by including a
pre-processing block inspired by the auditory model [7]. This led
to the formulation of the Multi-band Position-Pitch (M-PoPi) al-
gorithm. Preliminary results applying the M-PoPi algorithm have
been reported in [8]. There, it was tested only on different vowels
utterances by two speakers.

This paper takes the method a step further by presenting a
generic framework combining M-PoPi algorithm with particle fil-
ters to handle different kinds of acoustic environments and speaker
combinations. The method is tested on real speech signals of up to
3 concurrent speakers recorded in a room with reverberation time
of T60 = 650 ms. Due to the challenging nature of the acoustic
environment, the GCC methods for localization were not consid-
ered further in this paper. Whereas the SRP-PHAT algorithm has
shown good and robust performance in most acoustic real-world
conditions [5]. Therefore in this paper, we have compared our pro-
posed method performance with the SRP-PHAT algorithm at two
different levels. Firstly the M-PoPi and SRP-PHAT algorithms re-
sults are compared without employing particle filtering and then
the comparison of both algorithms using particle filtering is car-
ried out. Our proposed method performs well at both levels.

The rest of the paper is structured as follows: Section 2 gives
a description of the M-PoPi algorithm with several possible vari-
ants and their applicability in different scenarios. In Section 3,
an introduction of the particle filtering framework with new like-
lihood function based on the output of M-PoPi algorithm is pro-
posed. Section 4 discusses the experimental framework followed
by results and analysis in Section 5. Finally, Section 6 draws some
conclusions and outlines future works.
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2. THE M-POPI ALGORITHM

Fig. 1 shows a complete scheme outlining the M-PoPi algorithm.
It is an extended version of the PoPi algorithm. A set of pre-
processing modules are taken into consideration before comput-
ing the PoPi decomposition to overcome the inability of the basic
algorithm in visualizing more than one active speaker in case of
concurrent speakers.

The PoPi algorithm is used to extract the common period-
icities that are present in multi-channel audio in addition to the
cross-channel delay related to those periodicities from the cross-
correlation function. This leads to the parameterized sampling of
the cross-correlation function. The resulting position-pitch rela-
tions can be represented in a plane, the so-called PoPi plane, that
reveals the peaks at locations that corresponds to joint position-
pitch estimates of the active sources in an acoustic scene. A ma-
jor drawback of the original PoPi formulation is that it tends to
show the dominant speaker in case of multi-speaker scenarios.
The dominant source in a speech mixture is the one with the high-
est energy resulting in the strongest peak in the cross-correlation
function, whereas the weak source is not strongly present in the
cross-correlation function. This results in poor PoPi decomposi-
tion leading to either one or both estimates of pitch and position to
be incorrect. Fig. 2 presents the resulting PoPi planes for M-PoPi
and standard PoPi algorithm in case of a multi-speaker scenario
where two female speakers are active in a single frame.

2.1. The Gammatone Filterbank

The first module is inspired from the human cochlear model, which
is implemented using a filterbank consisting of 64 overlapping
bandpass gammatone filters, with center frequencies spaced uni-
formly on the equivalent rectangular bandwidth (ERB) scale be-
tween 50 Hz and 8000 Hz.

2.2. The Generalized Cross-Correlation (GCC)

In the next step, the cross-correlations are computed between a pair
of microphone signals as such: first each signal is passed through
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Figure 1: Block diagram of the M-PoPi algorithm for a single pair
of microphones with each signal passing through a set of gam-
matone filterbank and then Generalized Cross-Correlation (GCC)
calculated for every output channel of filterbank for one of the mi-
crophone signal with the corresponding filterbank outputs of the
other microphone signal. The GCC functions are then summed
to generate a mean cross-correlation function. The PoPi decom-
position is applied on the mean cross-correlation function. For a
multi-microphone pair system. All the PoPi planes are added to-
gether to create the final position and pitch estimates for the active
sources in an acoustic scene.

a gammatone filterbank resulting in 64 output channels. Then the
cross-correlations are computed between all the 64 outputs of both
signal as shown in Fig. 1.

R(τ) =

Z π

−π

W (ω) X1(ω) X∗
2 (ω) ejωτ dω, (1)

where X1(ω) is the Fourier transform of x1(t) and X∗
2 (ω) is the

complex conjugate of the Fourier transform of x2(t), which is
weighted by a weighting function, W (ω) and τ is the discrete
time-lag.

Different weighting functions can be used depending on acous-
tic conditions. The PHAT weighting is particularly advantageous
for high Signal-to-Noise Ratio (SNR) and reverberant scenarios.
Whereas the Maximum Likelihood (ML) weighting can be used
in cases where the noise statistics can be easily measured or is
known apriori. When pitch is also computed along side the DoA
estimates, the weighting function needs to be selected carefully.
In case of PHAT, the cross-correlation function loses its periodic-
ity, which holds information for the pitch estimation. This makes
it unsuitable for the PoPi algorithm, but we can benefit from it’s
advantages by replacing the central part of cross-correlation func-
tion carrying the DoA information with the central part of the
GCC-PHAT, where the correlation lag τ corresponds to 0◦−180◦.
Hence the modified correlation function is given as:

R(τ) =

(

RPHAT (τ), if τ ε 〈τ0◦ , τ180◦〉;
RCC(τ), otherwise.

(2)

This way R(τ) keeps the advantages of GCC-PHAT, while
maintaining the periodicity.

The summarization module normalizes the cross-correlation
functions before the PoPi decomposition step. With the normal-
ization, the relative information content of the multiple correla-
tion functions is adequately represented and allows combinations
of the information from these functions in a better way. With
this step, the relative delays associated with position-pitch of all
sources will be more enhanced in the case of multiple speakers re-
ducing the impact of sources with higher SNR values. These mul-
tiple normalized cross-correlations are then summed up to form a
mean cross-correlation function. We have used the mean cross-
correlation function for the PoPi decomposition.

2.3. The Position-Pitch (PoPi) Algorithm

To evaluate the presence of a periodic signal with unknown funda-
mental frequency F0, related to a source position at ϕ0, the mean
cross-correlation is then sampled accordingly:

ρ(τ, F0) = b ·
K

X

k=−K

R(bk · L(F0)c + τ). (3)

In this formulation, b denotes a normalization factor which is dis-
cussed later in the section, K defining the cross-correlation inter-
val used for summation of samples. L(F0) being a first time-lag
depending on the pitch parameter F0 according to L(F0) = Fs

F0
,

Fs being the sampling frequency of the recorded signals. The
time-lag value k · L(F0) is being rounded using floor function to
convert arbitrary real numbers that might result for the time-lag
values to close integers.

The normalization factor b can be set equal to 1 or be used as
the reciprocal of the number of correlation peaks considered. The
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(a) PoPi (b) M-PoPi

Figure 2: PoPi and M-PoPi decomposition of the same speech segment with 2 concurrent female speakers (Spkr. 1: ϕ0 = 155◦, F0 = 149
Hz; Spkr. 2: ϕ0 = 221◦, F0 = 188 Hz) using 24 channel circular microphone array. The M-PoPi algorithm correctly estimates both DoA
and F0 of each speaker, whereas the standard PoPi algorithm tend to show only one speaker with wrong DoA and F0 estimate.

summation runs over a symmetric interval from −K to K but it
can also be ran from a specific correlation peak −K1 to K2. In
this paper, we have used b = 1

2K+1
, where K is set to 3.

The sampling function generates time-lag value τ and funda-
mental frequency F0, which corresponds to the active speaker. The
source position ϕ0 can be determined from τ by relation ϕ0 =
cos−1( τ ·c

d·Fs
), where c is the speed of sound in air and d is the

distance between a pair of sensors.
In practice, the PoPi plane is evaluated only for predefined

values of L(F0) and τ = O(ϕ0), which are precalculated for
the frequencies F0 = [80 . . . 600] Hz and DoA candidates ϕ0 =
[0◦ . . . 180◦] with a stepsize of 1◦.

For a microphone array with more than two sensors such as
a uniform circular array (UCA), the position-pitch are estimated
for pairs of oppositely placed microphones and then summed up.
In order to cover a 360◦ view, the 0◦ − 180◦ response of each
oppositely placed microphone pair was first mirrored around its
axis before the summation.

3. PARTICLE FILTER FRAMEWORK FOR SOURCE
LOCALIZATION

The sequential Monte Carlo methods, commonly known as parti-
cle filters, are widely used in practical applications of tracking sin-
gle and multiple speakers due to their ability in dealing with mul-
timodality, non-linear functions and non-Gaussian noise. The par-
ticle filters are state-space based approaches based on the key idea
that the peaks due to true sources follow a dynamical model from
frame to frame whereas there is no temporal consistency present
in the outliers.

The tracking problem can be formulated in the following man-
ner, let y1:t = [y1. · · · ,yt] denote the concatenation of all mea-
surements up to time t and the task at hand is to track source with
source state defined as αt = [ϕ̂1, ϕ̂2, · · · , ϕ̂K , TK ], where ϕ̂k is

the DoA for source k and TK is the total number of sources active
at the current time-step t. The aim is then to recursively estimate
the posterior filtering distribution p(αt|y1:t) using Bayes’ Theo-
rem as follows:

p(αt|y1:t−1) =

Z

p(αt|αt−1) p(αt−1|y1:t−1) dαt−1

p(αt|y1:t) ∝ p(yt|αt) p(αt|y1:t−1). (4)

The first step is the prediction step, which will use the com-
bined dynamical model p(αt|αt−1), to propagate the previous
posterior, p(αt−1|y1:t−1), to give the estimate of the predictive
distribution p(αt|y1:t−1). The second step is the update step,
where the likelihood, p(yt|αt) is combined with the predictive
distribution at time-step t.

Particle filters essentially implements the recursions in (4) by
using a large set of discrete samples, or particles, with associated
discrete probability masses commonly known as weights. In order
to combine the M-PoPi algorithm with particle filters, there are
three building blocks to select such as: the dynamic model, the
localization function, and the likelihood function.

Keeping in view the current problem of speaker localization
ranging from one up to multiple speakers present at static position.
The main steps of particle filtering method are outlined as follows:

1. Initialization of Particle Filters: The particle filters are
randomly distributed in the state-space, α0

i with associ-
ated uniform weights w0

i = 1/N, i = 1 : N . In our exper-
iments, we have chosen N = 100.

2. Dynamical Model: Predict the new set of particles accord-
ing to Langevin dynamics model with similar settings as
used in [9].

3. Localization Function: To transform the raw data received
at the sensors into localization measurements, we use the

DAFX-3



Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

M-PoPi algorithm output maximized along the DoA dimen-
sion.

4. Likelihood Function: The M-PoPi algorithm is used as a
pseudo-likelihood function F (yt, α). The details for this
function are summarized in section 3.1. The new weights
corresponding to particles are assigned to as:

wt
i = p(yt|αt

i), (5)

and normalized to obtain
PN

i=1 wt
i = 1.

5. Resampling: Resample the particles by multiplying the
particles with higher weights and deleting the ones with
smaller weights to avoid the degeneracy problem using a
suitable resampling method. Systematic resampling is used
in our framework and weights are reset to uniform values.

6. Location Estimation:The final estimate for the location of
sources can be calculated by clustering the particles’ set or
a histogram measure using a carefully selected threshold.

3.1. M-PoPi based Likelihood Function

The likelihood function should be chosen to reflect that the peaks
in the localization function belong to likely source positions. Ad-
ditionally it should also refelect the fact that there might be no
peak belonging to any source locations such as when no source is
active or the presence of spurious peaks due to background noise
and sensor calibration errors.

The pseudolikelihood functions derived from M-PoPi algo-
rithm output based on the formulation of [9] is given as:

F (yt, α) = max{yt(ϕ̂α), ξ0}r, (6)

where ϕ̂α is the localization parameter corresponding to the state,
ξ0 ≥ 0, and r ∈ R+. The use of r as explained in [9] is to help
shape the localization function to make it more amenable to re-
cursive estimation. The presence of ξ0 ensures that the function
is non-negative and includes the case where no peak in the local-
ization function belong to the true source. The likelihood function
used to assign new weights to the particle filters is then calculated
as, p(yt|αt

(i)) = F (yt, α
(i)
t ). In our experiments, we used the

values of ξ0 = 0 and r = 2.

3.2. Particle Filter with Integrated Voice Activity Detection

During the silence periods occurring in the middle of speech sig-
nals, the tracking algorithm keeps on updating the source locations
as if the source was still active. To mitigate this problem, voice ac-
tivity detection should be included in the tracking framework. We
have followed the idea introduced in [10] to integrate voice activity
detector in the likelihood function such as:

p(y|α) = q0 · UD(ϕ̂α) + γ · (1 − q0) · Po(ϕ̂α), (7)

where the subscript t has been omitted for sake of simplicity. The
value q0 represents the hypothesis that the measurement originates
from clutter, and 1 − q0 indicates that the measurement origi-
nates from true source. And ϕ̂α corresponds to the state vector
α and with UD the uniform PDF over the considered state-space
D. The second term in the equation is the pseudo-likelihood func-
tion Po(·) derived from the M-PoPi algorithm as explained in pre-
vious section with the normalization constant γ ensuring that this
function is suitable for use as a density function.

During the silence periods, this integration allows the track-
ing algorithm to put more emphasis on the considered dynamics
model in spreading the particles, while at the same time reducing
the importance of M-PoPi observations due to the fact that no use-
ful information is present when speaker is inactive. This allow the
particle filter to keep track of silent speaker and resume tracking
successfully when the speaker becomes active again.

3.3. Additional Module for Removal and Addition of Particles

The performance of the tracking algorithm was further improved
by creating a heuristic approach, where a certain percentage of par-
ticles is deleted from the set at every iteration. After several trials,
a value of 20% was selected as it exhibits the best performance.
The deleted particles were replaced by a newly propagated set of
particles that were randomly placed in the neighborhood of the
peaks obtained by a peak-picking algorithm with maximum of 5
peaks selected at every iteration. The corresponding weights were
assigned using the pseudolikelihood function.

This step was carried out for both M-PoPi and SRP-PHAT
based particle filtering algorithms. This additional step reduced
the effect of a higher weighting imposed by the tracking algorithm
on the dominant speaker location relative to the weak speaker loca-
tion. This is especially helpful for multi-speaker scenarios, where
one speaker due to higher SNR will be more strongly present in
the speech mixture than the others with low SNR values.

4. EXPERIMENTAL FRAMEWORK

The performance of the algorithm was evaluated on data recorded
using 7 Yamaha MSP5A loudspeakers and a 24 channel UCA in
the SPSC meeting room. This meeting room has the dimensions
6.02 × 5.32 × 3 m and a reverberation time RT60 = 650 ms.
One of the walls of the room has a large window partly covered
by blinds that were set open during the recordings. The floor is
covered with standard carpet. No particular effort was made to
reduce the reverberations in the room.

The array has been designed with 24 Behringer ECM8000
omni-directional microphones positioned equidistantly with an in-
ner diameter of 55 cm on a circular ring connected to an M-Audio
Firewire Audiophile Mobile Recording Interface under control of
a laptop computer.

For the recording a subset of Keele [11] and MOCHA-TIMIT
[12] databases was used. A set of 7 speech files containing 3 male
and 4 female utterances were mixed into longer segments model-
ing different speaker interaction behaviors in a spatialized multi-
speaker scenarios. The array was placed in the center of the room;
the loudspeakers were positioned at a height of 1.39 m maintaining
a constant distance of approx. 2 m from the array. The azimuths
of all speakers with their respective gender tags are outlined in Ta-
ble. 1. The playback and recording process was controlled by soft-
ware on a single laptop and the captured audio was saved directly
to the hard disk of the laptop with 16 bit resolution and sample rate
of 48 kHz.

To evaluate the localization performance of the algorithms, a
frame level metric, denoted as Acc, is used. This measure has also
been used in [13] for the localization estimate. The measure is
based on the normalized number of frames, (where the estimated
localization angle ϕ̂n, is close enough to the true angle ϕ0, to be
considered correct ϕ̂n is scored as correct if it is close to the true
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DoA S1(F) S2 (F) S3 (M) S4 (M) S5 (F) S6 (F) S7 (M)
ϕ0 221◦ 155◦ 122◦ 248◦ 298◦ 342◦ 15◦

Table 1: Azimuths of speakers (S1-S7) with 3 male (M) and 4 female (F) speakers.

S1 S2 S3 S4 S5 S6 S7 Mean S1+S2 S1+S2+S3
SRP-PHAT 65.2 88.8 67.2 39.6 84.8 94.4 90 75.7 54.5 43.7

MPoPi 85.8 94.7 86.3 71.4 97.5 97.8 96.2 90 58.8 52.5
SRP-PHAT-PF 96 99.7 74.5 92.6 98 97.7 99 93.9 57.5 49.4

MPoPi-PF 92.7 99.7 87 97 98.6 97.7 100 96 71.5 60.5

Table 2: Localization accuracy in percent for all three speaker configuration, where bold values represent the best performance achieved
out of all 4 algorithms for every case.

angle of any of the speaker):

Acc =
1

N

N
X

n=1

δ∗(ϕ0, ϕ̂n) × 100% (8)

where N is the number of frames. δ∗ is defined as

δ∗(a, b) =

(

1 if |a − b| ≤ ∆

0 otherwise.
(9)

where ∆ is a grace boundary around the true angle within which
the estimated angle is considered to be correct. The value of grace
boundary was fixed at 5◦. This correspond to the minimal inter-
speaker distance of 35 cm in a 2 m distance from the array.

5. RESULTS AND ANALYSIS

A comparative analysis between the M-PoPi and SRP-PHAT al-
gorithms for single up to three active speaker scenarios is carried
out at two levels. Firstly both algorithms have been tested with-
out using the tracking framework, and then the particle filtering
framework similar to the M-PoPi algorithm is used in conjunc-
tion with SRP-PHAT algorithm, where the output of SRP-PHAT
is used as the pseudolikelihood function. And both algorithms are
again compared by utilizing the particle filtering framework. The
methods are evaluated with a frame length of 104.2 ms with a
frame shift of 52.1 ms for all recordings.

For SRP-PHAT, the functions were computed only for azimuths
over a range of 0◦ − 360◦ with a resolution of 1◦. No compara-
tive study was undertaken with the original PoPi algorithm, as it
tends to show either wrong estimates of position and of pitch of
the sources or only the dominant speaker, as illustrated in Fig. 2 .

Tab. 2 shows the averaged frame correctness scores of the M-
PoPi and SRP-PHAT algorithms for all 7 single speakers and up
to 3 concurrent speakers. The cases of concurrent speakers were
made with different combinations of speakers. The 2 Speaker case
was made with S1 and S2 from the azimuth table consisting of
two female speakers and in 3 speaker case, S3 a male speaker was
added. Due to relatively strong presence of some sources to the
others, an averaged frame correctness score was used instead of
individual score of each speaker. It also makes the comparison of
two methods more straightforward.

As shown in Tab. 2, the proposed method performs better in
comparison to the SRP-PHAT method for all speaker cases. In
case of single speakers, both algorithms performance improve us-
ing particle filters. The results for the original algorithm for one

source scenario are varying among different speakers. It was ob-
served that the speakers with low SNR have least frame correctness
score, e.g, S1 had SNR of around 15 dB with only 65% correct-
ness score for SRP-PHAT. In this case the M-PoPi algorithm still
delivers an average score of 85%. On the other hand speaker S5
to S7 had SNR of more than 20 dB, where SRP-PHAT algorithm
detects 90% frames correctly with M-PoPi delivering 97% frames
correctly without the use of particle filters.

The use of particle filters is more apparent for the weak sources,
as with particle filters both algorithm have more than 90% frame
correctness score for all single speakers. This highlights the im-
portance of using a post-processing stage, which works under the
principle that the true sources follow a dynamical model, whereas
false sources that appear due to background noise and multipath
propagation have no temporal continuity. The particle filtering al-
gorithm has the most significant effect on S4, which had really
poor results for detection only algorithms but produced around
97% score for M-PoPi based particle filters and 92.56% for SRP-
PHAT based particle filters. This highlights that the framework
defined with M-PoPi algorithm performs better on average than
the one using SRP-PHAT for all seven speaker cases.

The concurrent speaker case, where in a single analysis frame
multiple speakers are present poses a challenging problem. Both
localization algorithms give rather poor results for each case with
M-PoPi giving an absolute improvement of 4.3% and 8.77% over
SRP-PHAT algorithm for 2 and 3 concurrent speaker cases respec-
tively. The use of particle filtering method with M-PoPi algorithm
improves localization accuracy by 12.7% and 8% in comparison to
M-PoPi method. The SRP-PHAT based particle filtering method
only improves the performance by 2.98% and 5.63% for the same
two cases. It can be clearly seen from these results that the per-
formance of particle filters depends upon the localization function.
The SRP-PHAT method computes the averaged power response,
which directly depends upon the relative loudness of all speakers.
As the weak sources are dominated by strong sources with higher
SNR values. Though the localization accuracy of M-PoPi also de-
grades for weak sources but the affects of relative SNR values are
much less pronounced than SRP-PHAT algorithm.

The advantage of using F0 as an additional feature for speaker
discrimination in M-PoPi algorithm is clearly visible, and F0 had a
much significant effect on localization performance as the number
of speakers increases.
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6. CONCLUSIONS

To improve the localization of single to multiple active sources
in an acoustic environment, the M-PoPi algorithm has been com-
bined with particle filters and a new likelihood function has been
proposed. The proposed method has been tested on multi-channel
speaker recordings using a circular microphone array in a highly
reverberant meeting room with background noise. The results have
been compared to the state-of-the-art SRP-PHAT algorithm. It
shows better performance for all speaker combinations ranging
from single up to three concurrent speakers. The M-PoPi algo-
rithm has proved to be a better localization and likelihood function
than SRP-PHAT algorithm as an average relative gain in localiza-
tion accuracy of more than 10% is achieved over the SRP-PHAT
algorithm. This improvement results partly from assigning pitch
value to the position of the sources and partly from introducing
a pre-processing stage with application of multiple sensor pairs.
Future work will focus on moving concurrent source scenarios.
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