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ABSTRACT

Windowing of discrete signals by temporal weighting is an

essential tool for spectral analysis and processing to reduce

bias effects. Many popular weighting functions (e. g. Hann,

Hamming, Blackman) are based on a sum of scaled cosines.

This paper presents an alternative class of windows, const-

ructed using sums of sines and exhibiting unique spectral

behavior with regard to zero location and a side lobe decay

of at least –12 dB/octave due to guaranteed continuity of the

weighting. The parameters for the 2- and 3-term realizations

with minimum peak side lobe level are provided. Usage of

the sum-of-sines windows with the DFT and their adoption

to lapped transforms such as the MDCT are also examined.

1.  INTRODUCTION

Finite impulse response (FIR) filtering of discrete signals,

particularly in the context of filter banks, is widely utilized

in spectral analysis, processing, synthesis, and media data

compression, amongst other applications. It is well under-

stood that the temporal (or spatial) finiteness of the filter(s),

and hence the finiteness of the signal interval which can be

processed at a time, can lead to a characteristic referred to as

bias or leakage [1, 2, 3]. The cause of bias can be ascribed

to time-frequency uncertainty or, put differently, discontin-

uities between the edges of the interval’s waveform as well

as those of its differentials. To reduce the unwanted effects

related to spectral leakage, it is therefore often necessary to

minimize such discontinuities in the signal and some of its

differentials. This can be accomplished by multiplying each

sample s(t), t = 0, 1, …, L – 1, of the L-length interval by a

weight w(t) prior to filtering, such that the endpoints of the

waveform are tapered to zero. An equivalent approach is to

apply the weights to each basis filter of the filter bank [2].

Since the weighting factors are often described by an

analytical expression, a set of factors is commonly known

as a weighting function or window function. A multitude of

window functions, optimized toward different criteria, have

been documented [1, 2, 3, 4, 5]. Arguably three of the most

popular functions in use today are the ones reported by von

Hann, Hamming, and Blackman. This paper proposes alter-

natives to these functions, equally easy to compute and with

unique spectral performances in terms of bias reduction.

The remainder of the document is organized as follows.

Section 2 revisits the aforementioned window functions and

identifies the underlying general design equation. Section 3

then presents a modification of this expression to define an

alternative class of windows. In Section 4, the performance

of 2- and 3-term variants of this window class is evaluated

and compared to other windows using some of the figures

of merit described in [2]. Motivated by the result, specially

optimized realizations are derived. Section 5 reports on an

interesting feature of the proposed window class when used

with the DFT, and Section 6 studies the feasibility of apply-

ing the previously derived approach to the design of power

complementary window functions for use with block-based

transforms like the MDCT. Section 7 concludes the paper.

2.  SOME CLASSIC WINDOW FUNCTIONS

For the sake of consistency and comparability with seminal

investigations of window functions, Nuttall’s methodology

and notation [4] shall be adopted in the present discussion.

In particular, let L denote the duration (length) of a window

realization, t the location (time) within the weighting, and f

the frequency within the window’s power density spectrum,

obtained by Fourier transformation of the window function.

Moreover, all window functions shall be normalized to peak

amplitude of one. Since only symmetrical, even-length, bell-

shaped windows are studied here, this implies w(L/2) = 1.

The first weighting function to be considered is known

as the Hann (or Hanning) function. It is specified in [2] as

wHann t   = sin
2⋅ t

L  (1)

for DSP applications (nonnegative values of t). As shown in

[2] and evident from (1), the Hann function is a special case

of a class of exponentiated sine functions:

wat  = sin
a⋅ t

L ,  a  ≥ 0  . (2)

Note that (1) can also be written as the sum of an offset

and a scaled cosine:

wHann t   = 0.5−0.5cos2⋅
t

L  . (3)

This formulation allows for a particular spectral optimi-

zation of the Hann window (see Section 4) by changing the

offset and scaling factor [2]. The outcome is the Hamming
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function, whose exact parameterization is given in [4] as

wHamming t  =  0.53836−0.46164 cos2⋅
t

L   . (4)

As pointed out by Nuttall [4], the Hann and Hamming

windows are two-term realizations of a class of (K+1)-term

functions which shall be referred to as sum-of-cosines func-

tions. Simplifying Nuttall’s notation, they can be written as1

w
b
t   = ∑

k=0

K

−1k b
k
cos2k ⋅

t

L (5)

for usage in DSP applications. Three-term implementations

are also common. A simple case is (5) with K = 2 and factors

b0  = 0.375,  b1  = 0.5,  b2  =  0.125  , (6)

which is equivalent to (2) with a = 4. Similar to Hamming’s

approach, Blackman [1] derived the following optimized bk:

b0  = 0.42,  b1  = 0.5,  b2  = 0.08  . (7)

Nuttall [4] further refined Blackman’s values for better

near-field spectral response (first side lobes, see Section 4):

b0  = 0.40897,  b1  =  0.5,  b2  = 0.09103  . (8)

The interested reader is encouraged to take a look at [4]

for other optimized 3- and 4-term sum-of-cosines windows.

3.  THE SUM-OF-SINES CLASS OF WINDOWS

In the preceding section, it was noted that equation (2) with

a = 2, that is, w2(t), is equivalent to (5) with K = 1, b0 = 0.5,

b1 = 0.5. Moreover, equivalence between w4(t) and (5) with

K = 2 and bk of (6) was established. The question now arises

as to which bk yield w1(t), w3(t), or more generally, any wa(t)

with odd a. Observing (2) and (5), it becomes clear that it is

impossible to construct a sum-of-cosines window which is

equivalent to an odd-exponentiated sine window. However,

in some applications where odd-a wa(t) are required, it may

be desirable to use a formulation similar to (5) to allow for

spectral leakage optimizations as carried out by Hamming,

Blackman, and Nuttall. Luckily, the sum-of-sines functions

w
c
t   =  ∑

k=0

K

−1k c
k
sin2 k1 ⋅

t

L  (9)

provide the necessary means for optimization. By choosing

the constants ck suitably, two features can be acquired.

First, a window corresponding to an odd-exponentiated

sine window of (2) can be constructed. The ck for the three

1 This equals [4, eqn. (11)] with the leading scalar 1/L omitted.

lowest-order odd-a wa(t) shall be specified here. The classic

sine window w1(t) is trivial to construct using (9) by setting

K = 0 and c0 = 1. For w3(t), K is increased to K = 1, and

c0  =  0.75,  c1  =  0.25  . (10)

The fifth-order w5(t) is finally obtained using K = 2 and

c0  =  0.625,  c1  = 0.3125,  c2  =  0.0625  . (11)

Second, like the bk in (5), the ck can be determined such

that spectral behavior similar to that of the Blackman, Ham-

ming, and Nuttall windows is achieved. Before deriving the

respective ck for K = 1 and K = 2, though, it is important to

assess exactly which aspect of a window’s spectral response

should be optimized. To this end, objective measures of the

spectral performance of a window are necessary. In the next

section, an analysis of all window functions mentioned thus

far is conducted by means of some popular measures.

4.  EVALUATION AND OPTIMIZATION

It is well established that the multiplication of a time signal

by another signal corresponds to the convolution of the fre-

quency transforms of the two signals. Hence, by applying a

weighting function to a signal, the signal’s spectrum is con-

volved with the spectrum of the weighting. To evaluate the

effect of a window function, it therefore suffices to study its

spectrum, for instance using Fourier transformation.

Figures 1 and 2 illustrate the magnitudes of the power

spectra of the above windows, normalized in frequency and

amplitude as in [4]. Due to recurring spectral zeros, all win-

dows exhibit a main lobe at zero frequency and side lobes

decaying in amplitude with increasing frequency. The falloff

rate of the side lobes is dictated by the discontinuities at the

edges of the window function as well as those of its differ-

entials; the more low-order derivatives are continuous, the

faster a window decays to zero for large f. See also [2, 4].

For the exponentiated sine functions wa(t) of Figure 1,

it can be stated that the asymptotic falloff in dB per octave

is proportional to a [6]:

falloff wa  = −6.02a1  
dB

oct
 . (12)

This appears to hold for all nonnegative real a, not only

integers. For the optimized windows of Figure 2, a different

side lobe behavior can be observed. The Hamming window,

whose main lobe width equals that of w2(t) = wHann(t), falls

off at only –6 dB per octave because the weighting function

is not continuous. Similarly, the Blackman and Nuttall win-

dows, which have the same main lobe width as w4(t), show

a decay of only –18 dB per octave; their first derivatives of

weighting are continuous, but their third derivatives are not.

However, these windows exhibit lower maximum side lobe

levels than their wa(t) counterparts. This can lead to notably
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reduced spectral bias in some applications and is the reason

why the optimized windows were developed.

Since the optimization procedure used for the sum-of-

cosines windows in Figure 2 can also be applied to the sum-

of-sines functions of (9), it is possible to modify the 2-term

window with (10) and the 3-term window with (11) for the

lowest maximum side lobe level (the one-term sine window

with c0 = 1 cannot be optimized this way). Due to the use of

sinusoids, any realization of (9) approaches zero amplitude

at its endpoints; a side lobe falloff rate of –12 dB per octave

(1/f 2, see [2]) is therefore guaranteed. If the derivatives are

allowed to be discontinuous, additional degrees of freedom

are obtained for determining the ck, which can be employed

to minimize the peak side lobe magnitude [4].

For the two-term sum-of-sines window (K = 1), the ad-

mission of a discontinuous first derivative yields one extra

degree of freedom in the choice of c0 and c1. It is found that

Figure 1: Spectra of some exponentiated sine functions (2).

Figure 2: Spectra of optimized sum-of-cosines functions (5).

c0  =  0.79445,  c1  =  0.20555 (13)

produce the lowest possible side lobe maximum of –54.3 dB

(first and third side lobe). The 3-term window (K = 2) offers

two extra degrees of freedom in the selection of the ck. The

minimum peak side lobe level of –82.8 dB is reached using

c0  =  0.69295,  c1  =  0.2758,  c2  = 0.03125  . (14)

Figure 3 shows the power spectra of windows (13) and

(14). For all ten presented windows, the maximum side lobe

level, the asymptotic falloff, the main lobe width (as given

by the location of the first zero), and the 6-dB bandwidth (a

measure of the resolution of a window, see [2]) are listed in

Table 1. Note how in terms of overall spectral performance,

window (13) lies right between the 2-term Hamming and 3-

term Nuttall window. Moreover, while achieving a side lobe

peak similar to that of the Blackman window, window (13)

has a narrower main lobe. Window (14) has the lowest side

lobe maximum of all windows in this discussion, but along

with w5(t), it also exhibits the widest main lobe.

5.  SUM-OF-SINES WINDOWS AND THE DFT

The observant reader will have noticed the difference in the

zero locations between the spectra of the sum-of-sines and

the sum-of-cosines windows. As apparent in the figures, for

the latter windows, most or all zeros occur at integer multi-

ples of Lf, whereas for the sum-of-sines windows, the zeros

lie halfway between integer Lf. In the following, this feature

shall be illuminated with regard to analyzing the spectra of

windowed harmonic signals using the DFT.

As noted earlier, the Fourier transform (FT) of a signal

interval s(t) weighted by w(t) is equivalent to the convoluti-

on of the individual FTs of s(t) and w(t). The FTs of the sine

window w1(t) and the Hann window w2(t) are given by

Figure 3: The proposed optimized sum-of-sines windows (9).
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Table 1: Figures of merit for the presented windows.

Window Function
Side Lobe
Maximum

(dB)

Side Lobe
Decay

(dB/oct.)

Main Lobe
Width

(Lf)

6-dB
Bandwidth

(Lf)

 w1(t), 1-term sine –23.0 –12 3 1.64

 w2(t), Hann –31.5 –18 4 2.00

 w3(t), 2-term sine –39.3 –24 5 2.31

 w4(t), 3-term cos. –46.7 –30 6 2.59

 w5(t), 3-term sine –53.9 –36 7 2.84

 Exact Hamming –43.2 –06 4 1.82

 Proposed 2-term –54.3 –12 5 2.10

 Blackman –58.1 –18 6 2.30

 Nuttall 3-term –64.2 –18 6 2.36

 Proposed 3-term –82.8 –12 7 2.48

W 1 f   = 
2cos f 

1−4 f
2


     (15)

and

W 2 f   =  
sin  f 

2 f 1− f
2


 , (16)

respectively [3]. Thus, W1( f ) = 0 for f = n + 0.5, |n| ≥ 1, and

W2( f ) = 0 for f = n, |n| ≥ 2, with n being an integer. The FTs

of the higher-order and optimized windows of Table 1 differ

from (15) and (16), but the respective trigonometric term in

the numerator (cos( ) for the sum-of-sines, sin( ) for the sum-

of-cosines windows) is common to all. In the context of the

DFT, the implication is that maximum spectral leakage with

a sum-of-cosines window coincides with minimum leakage

with a sum-of-sines window, and vice versa. An example is

given in Figure 4 for the proposed 2-term window (13) and

Nuttall’s 3-term window (8) applied in a 256-point DFT.

Figure 4: DFT spectra of two sinusoids with frequencies of

Lf = 32 and 96.5, after applying different window functions.

6.  SUM-OF-SINES WINDOWS AND THE MDCT

In contemporary audio or video coders, a signal waveform

is divided into segments, and each segment is quantized to a

coarser representation to obtain high data compression, i. e.

a low bit rate required for storing or transmitting the signal.

In an attempt to achieve a coding gain by means of energy

compaction (or in other words, to increase perceptual quality

of the coded signal for a given bit rate), filter-bank transfor-

mations of the segments prior to quantization have become

popular. Most recently developed systems apply time-to-fre-

quency transformation in the form of the modified discrete

cosine transform (MDCT), a filter bank permitting adjacent

segments to overlap while providing critical sampling.

For better performance, the forward and inverse MDCT

operations are accompanied by weighting of each segment:

on encoder side, an analysis window is employed before the

MDCT, and on decoder side, a synthesis window is applied

after the inverse MDCT. Unfortunately, not every weighting

function is suitable for use with the MDCT. Assuming iden-

tical, symmetrical analysis and synthesis window functions,

w L−1−t  =  wt  ,  t  =  0, 1, ..., T−1, (17)

the entire system can only yield perfect input reconstruction

in the absence of quantization or transmission errors if

w
2
t w

2
T t   = 1 ,  t  =  0, 1, ..., T−1, (18)

with T = L/2. This is the so-called Princen-Bradley or power

complementarity (PC) condition reported in [7]. Common

PC windows are the sine and KBD windows utilized in the

MPEG-2/-4 AAC standard [6, 8], with the former given by

w sine t  =  sin⋅t0.5

L   , (19)

as well as the window of the Vorbis codec specification [9],

w vorbist   = sin2⋅sin
2⋅t0.5

L   . (20)

To investigate if equation (9) can be used to create sum-

of-sines windows satisfying (18), we note that, given (17),

wsine(t) can be regarded as the sine of a triangular function:

L−1−t  = t   =  
t0.5

T
 , (21)

  w sinet  = sin2⋅t   . (22)

Likewise, wvorbis(t) can be written as (22) with (t) replaced

by

 ' t  = sin
22⋅t   . (23)
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The amplitude complementarity about  T =  L/4 of (21) and

(23),

t T −1−t   = 1 ,  t  =  0, 1, ..., L /4−1, (24)

suggests that alternatives to these functions can be designed

to optimize the frequency response of the window function

without sacrificing the PC property. In fact, upholding (17),


d
t   =  t −∑

k=1

K

d
k
sin 2k ⋅t  (25)

is an extension of (21) conforming to (24), which employs a

modification of the sum-of-sines function of (9); the alter-

nating-sign term is omitted, and instead of odd multiples of

, even multiples are considered. Informal experiments run

by the present author indicate that, although PC is obtained

even with dk yielding d (t) < 0 for some t, only realizations

with nonnegative d (t) for all t yield satisfactory pass-band

selectivity and stop-band rejection simultaneously.

In Section 4, the ck coefficients of (9) were chosen such

that the maximum side lobe level of the resulting window is

minimized. A similar procedure can be followed here. How-

ever, owing to the PC constraint of (18), the spectral design

possibilities are more limited, especially regarding the first

two or three side lobes. In general, one must specify a lower

frequency border Lf0 > 1.5 (or alternatively, a start side lobe)

above which the side lobe maximum can be minimized by a

reasonable amount. To give an example, an informal exhau-

stive search with Lf0 = 4.5 yields the 2-term parameterization

d 1  =  0.12241,  d 2  =  0.00523  , (26)

which produces a window whose first three side lobes above

Lf0 all have a level of –66.8 dB. The higher-frequency side

lobes decay from that value at a rate of –12 dB per octave,

just like those of the optimized windows (13) and (14) of the

previous sections. The frequency response of the weighting

function constructed using (17), (22), (25) and (26) is shown

in Figure 5 along with those of wsine(t) and wvorbis(t). Clearly,

a substantial increase in side lobe rejection is achieved in the

proposed window in comparison to the sine window. Due to

constraint (18), this advantage comes at the cost of a slightly

wider main lobe and higher first side lobe. A comparison to

the Vorbis window shows almost identical main lobe widths

and maxima of the first two side lobes. For 4.5 < Lf0 < 11.5,

the proposed window outperforms wvorbis(t) in terms of side

lobe attenuation. Note also that the Vorbis window spectrum

falls off at –18 dB per octave and has its magnitude zeros at

(or near) integer multiples of Lf. Hence, its spectral behavior

resembles that of a sum-of-cosines window. In fact, it may

be considered the PC equivalent of the Hann window. Like-

wise, the proposed PC window seems to be a counterpart of

the optimized sum-of-sines windows of Section 4. A more

thorough investigation, including a performance evaluation

in the context of audio coding, is a topic for future research.

Figure 5: Spectra of two PC windows and proposed window

7.  CONCLUSION

Mathematically simple alternatives to the Hamming, Black-

man, and similar windows, generated using sums of weigh-

ted sines, have been presented. The sum-of-sines approach

yields unique properties such as guaranteed continuity of the

window function and can also be applied in the construction

of power complementary windows for e. g. audio coding.
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