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ABSTRACT

In this paper we propose a method for automatic local tim@-ada
tation of the spectrogram of an audio signal, based on itsrdec
position within a Gabor multi-frame. The sparsity of the lsgsas
within each individual frame is evaluated through the Réayi
tropies measures. According to the sparsity of the decoitipos,

an optimal resolution and a reduced multi-frame are detethi
de ning an adapted spectrogram with variable resolutiod laop
size.

The composition of such a reduced multi-frame allows an imme
diate de nition of a dual frame: re-synthesis techniquestfos
adapted analysis are easily derived by the traditionalgphasoder
scheme.

1. INTRODUCTION

The quality of analysis and synthesis processes based @3 tim
frequency transforms is highly affected by the frames usethie
decomposition and the reconstruction of the signal. Ticukd
methods based on single frames of atomic functions haverimpo
tant limits: a Gabor frame imposes a xed resolution overtlad
time-frequency plane, while a wavelet frame gives a syridéter-
mined variation of the resolution: moreover, the user igudintly
asked to de ne himself the analysis window features, whichdt
always a simple task even for normally experienced users.
The resolution of such analysis methods is linked to the time
frequency concentration of the basic functions involvethinde-
composition. Frame Theory[ ([1][2]][3]) extends the cqstcef
orthonormal basis in a Hilbert spa¢é: in our domain, it gives
a uni ed model for the description of decomposing systenseba
on atomic functions. The sét g » isaframeforH if there ex-
ist two positive non zero constarsandB , calledframe bounds
such thatforalf 2 H,
AKf K Bkfk®:

jnf; Q2 @)

2

This work is supported by grants from Region lle-de-France

DAFX-

xavier.rodet@ircam.fr

The time-frequency concentration of an atomin a frame can
be represented through its associated Heisenberg boxa iteist-
angle drawn in the time-frequency plane whose dimensioes ar
linked respectively to the time spread of a function and ®fth-
quency spread of its Fourier Transform. In the Short Timerieéou
Transform, the boxes associated to the transpositionseofvth-
dow functiong have xed dimensions in every area of the time-
frequency plane: the resolution is the same for all the corapts

of the signal. In the Wavelet Transform, lower frequency pom
nents are represented with a higher time resolution, whiliglaer
frequency resolution is given for the higher frequency ornss
limits are not motivated when analyzing a sound without anaip
knowledge of its features, as the best resolution tradsaféither
unique nor depending only on a single variable. Itis theretse-

ful to search for adaptive methods of sound analysis andhegit,
and for algorithms whose operations are designed to change |
cally according to the analyzed signal features.

Givenl 2 R*, the analysis resolution can be globally modi ed
with a scaling operation

gd)= =g ; ; )

P~

which has the effect of changing the ratio between the edfjes o
the Heisenberg box associatedgtavhile preserving its area: this
means that the global time-frequency resolution is moditsd
privileging concentration in one dimension to the detritnafithe
other. The idea which has lead to the de nitionrofiltiple Ga-
bor frames([4]) is to consider a decomposing system where all
these different resolution tradeoffs coexist, providinmaere de-
tailed description of the signal. The drawback is the inticighn

of a high redundancy which lowers the readability of the eepr
sentation: therefore methods for appropriate reductidrtbese
multiple frames are needed, typically using sparsity dete

A promising approach[([5]) takes into accolRényi entropiesa
generalization of the Shannon entropy: given a unit-ensigyal

f 2 L2(R) and a time-frequency representation(u; ) of f the
Rényi entropy of the representation is de ned forader > 0
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as follows and the squared modulus of this decomposition is the digerkt
zZ spectrogram,
H ()= log, ¢ (u; )dud : 3) PSt [n;k] = jSf [n; k]j? : (6)
Given a discrete spectrogram with time stepnd frequency step

In this paper, the time-frequency representatiqr(u; ) consid- basin B), we look for an evaluation of its entropy over a darta
ered is thespectrogramas detailed in the next section. The appli- rectangle of the time-frequency plafte;t.] [ 1; 2]  R%.
cation to our problem is related to the concept that minimjizhe ~ The rectangle identi es a sequence of poifts Z? whereG =
complexity or information over a set of time-frequency een-  f(n;k) 2 Z® :ti na  t; 1 kb 2g. Through an
tations of a same signal is equivalent to maximizing the eatra- appropriate normalization we obtain the sequence
tion and peakiness of the analysis, thus selecting the éssiution PS; [n: k]
tradeoff: a sparsity measure can consequently be de nexligjfir PSC[n;k]= P ! o ; @)
an information measure. Methods inspired by this approasie h moxozc PSH [n% k7]
?ﬂ%(n))v.vn to give interesting results both analytically and atioally with [n; k] 2 G, which can be seen as a discrete probability den-

sity. As a discretization of the original continuous spegtam,
every sample ilPS? is related to a time-frequency region of area
ab; we thus obtain the Rényi entropy measure [for (7) directynfr

@),

H (PSP)=

The proposed method of local time adaptation improves on
the analysis multi-frame de nition: the user can specify rate
arbitrary set of positive scaling factoks ~ R* corresponding
to the resolutions available; then the algorithm composferd
ent framesf ghy Gk y222 With | 2 L andd' as in [2), and a
multiple Gabor frame is obtained as the union of all the given

frames. The main improvement in comparison with [7] is thetw  general properties of Rényi entropies can be found’in [9] [1
are not obliged to keep the same hop size within the individua 4, [11]; we recall in particular those which have a clostatien
frames analyses, thus avoiding unnecessary short hopar®rl \\ith our problem. It is easy to show that for every nite diste
windows: our method employs_ frames which share the same re-prohability densityP the entropyH (P) tends to coincide with
dundancy, so that every analysis has the same overlap, Wih @  {he Shannon entropy & as the order tends to one. Moreover,

ni cant gain in computational cost. ) _ H (P) is a non increasing function of, so
The limit of our approach in comparison with| [6] is that we ap-

ply the entropy evaluation on the whole frequency dimensgiwms 1< 2) H (P) H,P): 9)
providing analyses which are adapted only in the time diroens

On the other hand, the reduced multi-frame obtained with our AS we are working with nite discrete densities we can also-co
method allows a perfect reconstruction of the signal whichdt sider the case =0 which is simply the logarithm of the number
provided by [[6]: in our scheme, for any analysis segment a sin Of elements inP; as a consequendeo(P) H (P) for every
gle original frame is retained; therefore, a re-synthesitinique ~ admissible order .

can be de ned as a straightforward extension of the leasarequ A third basic fact is that for every orderthe Rényi entropyd  is
error estimation from the modi ed STFT presented[ih [8]. $o 0 maximum wherP is uniformly distributed, while it is minimum
method can easily be used to provide common time-frequemey p  and equal to zero wheR has a single non-zero value. Given a

cessing frameworks with an adaptive analysis technique. ghenefricP and its entropyH (P) for a certain order , we have
that for any

1
1

X
log, (PSE[n;k]) +log,(ab): (8)
k26

. 1 1
2. ENTROPY EVALUATION OF A SPECTROGRAM H (P) H (P): (10)
We will now describe the application of the entropy sparsita- ) ) ) )
sure on the spectrogram distribution. We will focus on ditized All of these results give useful informations on the valuéslit
spectrograms, as dealing with digital signal processingiresto  ferent measures on a single densttys in [8), while the relations
work with sampled signals and distributions, even if for thest ~ between the entropies of two different densitiesand Q are in
part the results can be extended to the continuous case. general hard to determine analytically; in our problémand Q

A Gabor frameis obtained by time shifting and frequency trans- are two spectrograms of a same signal in a same time-freguenc
posing a window functiory according to a regular lattice. Given ~@rea, based on two window functions with different scalisgra

a time stepa and a frequency stepwe writefungn2z = an . ) o
andf g2z = bk; these two sequences generate the nodes of theWhen the spectrogram of a signal does not depend on timesisis e

time-frequency lattice for the franf@nx g 22> de ned as ier to _nd such a relation, and it turns out to be the one expe:ct
let PSS be the sampled spectrogram of a sinusiaver the re-
gk ()= gt un)e? k' (4) gion G with a window functionh of compact support; theRSS

is simply a translation in the frequency domainfofthe Fourier
the nodes are the centers of the Heisenberg boxes assomated transform of the window, and it is therefore time-indeperid&Vve

the windows in the frame. The decomposition of a funcfio@ choose a bounded sketof admissible scaling factors, so that the
L2(R) in a Gabor frame is simply a sampling of its STFT accord- discretized support of the scaled windot/sstill remains inside
ing to such a lattice, G for anyl 2 L. Itis not hard to prove that the entropy of a
7 spectrogram taken with such a scaled versioh i&f given by
. — . P 2i .
Skl = Migmei = f(OOt u)e ' <'dt; () H (PSS)= H (PSS) log, I: (11)
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The sparsity measure we are using looks for the window which and the global overlap needed for the analyses. The algonitbs

minimizes the entropy measure: we deduce frionh (11) thatlies
one obtained with the largest scaling factor available, &b the
largest time-support. This is coherent with our expectedis sta-
tionary signals, such as sinusoids, are best analyzed witgre
frequency resolution, because time-independency alloasall
time resolution. Moreover, this is true for any ordeused for the
entropy calculus.

Symmetric considerations apply whenever the spectrograen o
signal does not depend on frequency, as for impulses.

the intermediate sizes so that for each signal segment ffleeedit
frames have the same overlap between consecutive windogds, a
so the same redundancy. This generates an irregular tipesiis
tion of the multi-frame elements in each signal segmentll&s i
trated in gure[d. Such a disposition causes a different anae of
the boundary parts of the signal on the different framesyaeat
the beginning and the end of the signal segment have a higher e
ergy when windowed in the smaller frames. This is avoidedh wit
a preliminary weighting: the beginning and the end of eagh si
nal segment are windowed respectively with the rst and asdco

A last remark regards the dependency[df (8) on the time and half of the largest analysis window. Such a weighting does no

frequency ste andb used for the discretization of the spectro-
gram. When considering signals as nite vectors, a signdlign
Fourier Transform have the same length. Therefore in theTSTF
the window length determines the number frequency poirttie
the sampling rate sets frequency values: the de nitiob isfthus
implicit in the window choice. Actually, the FFT algorithni@avs
to ask a number of frequency points larger than the signajtite
further frequency values are obtained as an interpolatatvwéser
the original ones by properly adding zero values to the $igif
the sampling rate is X, such a procedure establishes smiabe
a consequence of a larger number of frequency points. We
numerically veri ed that such a variation df has no impact c
the entropy calculus, so that the FFT size can be set acgota
implementation needs.

Regarding the time stegy) we are working on the analytical dem
stration of a largely veri ed evidence: as long as the decosin
system is a frame the entropy measure is invariant to rechay
variation, so the choice @ can be ruled by considerations on
invertibility of the decomposing frame without losing cobece
between the information measure of the different analybes is
a key point, as it states that the sparsity measure obtallossaa
total independence between the hop sizes of the differatyses:
with the implementation of proper structures to handle rhdp
STFTs we have obtained a more ef cient algorithm in comparis
with the ones imposing a xed hop size, @ [7].

3. ALGORITHM AND EXAMPLES

concern the decomposition for re-synthesis purpose, Hyttba
analyses used for entropy evaluations. For each signalesggme
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Figure 1: An analysis segment: time locations of the Heisenberg
boxes associated to the multi-frame used in our algorithm.

calculate the entropy of every spectrogram ag]n (8), wigis
the rectangle with the time segment analyzed as horizoirtedrd
sion and the whole frequency lattice as vertical. The sgatseal
analysis is de ned to be the one with minimum Rényi entrofhe t
best window is thus de ned consequently. Adaptation is ioletd
over the time dimension as for every signal segment the teelec

We now summarize the main operations of the algorithm we have analysis involve the whole frequency dimension. An int¢aion

developed providing examples of its application. For sppegams
calculation we have usedHanning window
_ 2 .
h(t) =cos®(t) 1,175 (12)
with  the indicator function of the speci ed interval, but it is-ob
viously possible to generalize the results thus obtainddeentire
class of compactly supported window functions. We createila m
tiple Gabor frame as ifi{4) using as mother functions somiedca
version ofh, obtained as in[{2) with a nite set of positive real
scaling factord. .
Different spectrograms of segments of the signal are catied|
with each one of the above frames: the length of the analgsjs s
ment and the overlap between two consecutive segmentsvare gi
as parameters.

The different frames composing the multi-frame have theesam
frequency stef but different time stepéa, : | 2 Lg: the small-
est and largest window sizes are given as parameters togédthe
jLj, the number of different windows composing the multi-frame

is performed over the overlapping zones to avoid abrupbdisc
nuities in the tradeoff of the resolutions.

The time adapted analysis of the global signal is nally rzed
by opportunely assembling the slices of local sparsesyaesiob-
tained with the selected windows.

In gure Blwe give a rst example of an adaptive analysis per-
formed by our algorithm with eight Hanning windows of diféeit
sizes on a real instrumental sound, a B4 note played by a rharim
this sound combines the need for a good time resolution ahthe
ment of the percussion, with that of a good frequency regwiut
on the harmonic resonance of the instrument. This is fulby pr
vided by the algorithm, as shown in the adapted spectrogtam a
the bottom of gure[B. Moreover, we see that the pre-echo ef th
analysis at the bottom of gurEl2 is completely removed in the
adapted spectrogram.

In gure Blwe give a second example with a synthetic sound, a
sinusoid with sinusoidal frequency modulation: as glrehdss,
a small window is best adapted where the frequency variasion
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Figure 2: Two different spectrograms of a B4 note played by a marimiih, Manning windows of sizes 512 (top) and 4096 (bottom)
samples.

fast compared to the window length; on the other hand, tlye&r 4. CONCLUSIONS
window is better where the signal is almost stationary.

The re-synthesis method introduced[ih [8] gives a perfect re We have presented an algorithm for time-adaptation of teetsp-
construction of the signal as a weighted expansion of thé-coe  gram resolution, which can be easily integrated in exishembe-

cients of its STFT in the original analysis frame. [%t[n; k] be work for analysis, transformation and re-synthesis of ati@asig-
the STFT of a signal with window functionh and time ste@; nal: the adaptation is locally obtained through an entrojryi-m

xing n, through an iFFT we have a windowed segmertt of mization within a nite set of resolutions, which can be dedby

the user or left as default. The user can also specify thedime-

fn(n;1)= h(na NDf(l); (13) tion and overlap of the analysis segments where entropynmea

tion is performed, to privilege more or less discontinuodapded
whose time location depends an An immediate perfect recon-  analyses.

struction off is given by Future improvements of this method will concern the spgcam
adaptation in both time and frequency dimensions: this pvib-
;_1 . h(na  Dfn(n;1) vide a decomposition of the signal in several layers of aisly
f()= P h2(na 1) : (14) frames, thus requiring an extension of the proposed teakrfior
n=1

re-synthesis.

We extend the same technique using a variable winldewd time

stepa according to the composition of the reduced multi-frame, 5 REFERENCES
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Figure 3: Example of an adaptive analysis performed by our algorithith @ight Hanning windows of different sizes from 512 to 4096
samples, on a B4 note played by a marimba sampled at 44.1kHpo the best window chosen as a function of time; at thehotthe
adaptive spectrogram. The entropy order iss 0:7 and each analysis segment contains four frames of the lavgiadow analysis with a
two-frames overlap between consequent segments.
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Figure 4: Two different spectrograms of a sinusoid with sinusoidadjfiency modulation, with Hanning windows of sizes 512 (&oj)
4096 (bottom) samples.

Figure 5: Example of an adaptive analysis performed by our algorithith @ight Hanning windows of different sizes from 512 to 4096
samples, on a sinusoid with sinusoidal frequency modulatimthesized at 44.1 kHz: on top, the best window chosen @scidn of
time; at the bottom, the adaptive spectrogram. The entroggras = 0:7 and each analysis segment contains four frames of the larges
window analysis with a three-frames overlap between carsgosegments.
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