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ABSTRACT

In this paper, we present the MOSPALOSEP platform for the
localization and separation of binaural signals. Our methods use
short-time spectra of the recorded binaural signals. Based on a
parametric model of the binaural mix, we exploit the joint evalua-
tion of interaural cues to derive the location of each time-frequency
bin. Then we describe different approaches to establish localiza-
tion: some based on an energy-weighted histogram in azimuth
space, and others based on an unsupervised number of sources
identification of Gaussian mixture model combined with the Min-
imum Description Length. In this way, we use the revealed Gaus-
sian Mixture Model structure to identify the particular region dom-
inated by each source in a multi-source mix. A bank of spatial
masks allows the extraction of each source according to the pos-
terior probability or to the Maximum Likelihood binary masks.
An important condition is the Windowed-Disjoint Orthogonality
of the sources in the time-frequency domain. We assess the source
separation algorithms specifically on instruments mix, where this
fundamental condition is not satisfied.

1. INTRODUCTION

In active listening, the separation of a stereo signal is a crucial
pre-processing tool for the interaction with the individual sources
which can be heard in the mix, for example by changing their
spatial position. In fact, in a recording, the sound engineer may
wish to change the position of the guitar, or to remove the singer’s
voice (for the karaoke effect), or remove all the instruments keep-
ing only the lead voice (a cappella). It is a challenge to separate
the sources in our case as there are only two sensors (miniature
microphones embedded at human ears) and no restriction on the
number of sources. Three early approaches are described in [1],
[2], [3].

In [4], we propose a algorithm for the separation of an arbi-
trary number of audio sources where there is a binaural signal.
This method uses a uni-dimensional power-weighted histogram
constructed in the azimuth space and modeled as a Gaussian Mix-
ture Model (GMM). The GMM structuree.g. number of sources,
weight, azimuthal location and deviation of each source is calcu-
lated using a Maximum Likelihood (ML) approach based on an
Expectation Maximization (EM) [5]. The GMM parameters are
used to setup a source separation stage where the energy of each
bin of the mix is assigned according to a posterior probability
mask, but the number of sources is not identified automatically.
The system’s processing overview is depicted in Figure 1. In this
paper, we compare the histogram based localization methods to an

∗ Part of this research took place at LaBRI – University of Bordeaux.

EM based localization method associated with the minimization
of the Minimum Description Length (MDL), and we discuss the
estimation of a precise number of sources; then we investigate the
source separation performance for complex musical signals mix.

This paper is organized as follows. We start by a presentation
of the binaural signal model in Section 2, then we describe the
joint azimuth estimator and the localization methods in Section 3.
In Section 4, we detail the source separation algorithms. Section
5 is dedicated to the description of our developed Toolbox, called
MOSPALOSEP (system for MOdeling, SPAtialization, LOcaliza-
tion and Separation). In Section 6, we conduct a comparative study
of the localization algorithms, and we investigate the source sep-
aration performance with a probabilistic mask in comparison to a
binary mask. Finally, we conclude and propose future works.
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Figure 1:Overview of the system’s processing.

2. MODEL

We considered punctual and omni-directional sound sources in the
horizontal plane where both the listeners and the musicians are on
the same level. Each source is located by its(ρ, θ) coordinates (no
elevation), whereρ is the distance from the source to the listener
head’s center andθ is the azimuth angle.

In a binaural context, the difference in amplitude or Interaural
Level Difference (ILD, expressed in decibels – dB) and in arrival
time or Interaural Time Difference (ITD, expressed in seconds) are
the main spatial cues for the auditory system [6]. In fact, a sound
source positioned on the left will reach the left ear sooner than the
right one, in the same manner the right amplitude level should be
lower because of wave propagation and head shadowing.

These binaural cues can be related to physical parameters such
as the speed of soundc and the head radiusr. From the analysis
of the CIPIC database, Viste [1] derives a sinusoidal model for the
ILD. In [7], we also propose a sinusoidal model for the ITD. Both
models are given with:

ILD(θ, f) = αf sin(θ), (1)

ITD(θ, f) = βfr sin(θ)/c, (2)
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whereαf and βf are frequency-dependent scaling factors (see
[7]), that best fit for the models covering the45 subjects of the
CIPIC database for all azimuths, in a least-square sense.

For K spatially distributed sourcessk(n) located at azimuth
θk, the binaural signal mix can be expressed as:

xL(n) =
K

X

k=1

sk, (3)

xR(n) =

K
X

k=1

ak(n) ∗ sk(n − dk(n)), (4)

where∗ is the convolution operator,ak(n) is the amplitude of the
k-th source for the right ear microphone relative to the left ear
microphone,dk(n) is the delay between the two microphones.

The convolution in the time-domain is equivalent to the mul-
tiplication in the frequency domain. By applying a Short-Time
Fourier Transform on Equations (9) and (10), the model becomes:

XL(t, f) =
K

X

k=1

Sk(t, f), (5)

XR(t, f) =

K
X

k=1

10−∆a,k(f)Sk(t, f) · e−j∆d,k(f), (6)

where∆a,k(t, f) and∆d,k(t, f) are given by:

∆a,k(f) = ILD(θk, f)/20, (7)

∆d,k(f) = ITD(θk, f) · 2πf. (8)

Thus, to separate the sourcessk(n) given the two channels
xL(n) andxR(n), we need to detect the number of sourcesK and
the mixing parameterθk for each sourcek.

3. SOURCE LOCALIZATION

The most important condition is that we consider any pair of sources
(sk(t), sl(t)) as Windowed-Disjoint Orthogonal (WDO) [3]. This
means that their short-time spectra do not overlap. Although, speech
signals are approximately WDO, this condition is rarely satisfied
for music signals. Based on this condition, the Equations (5) and
(6) can be simplified to:

∆a,k(f) = log10

˛

˛

˛

˛

XR(t, f)

XL(t, f)

˛

˛

˛

˛

, (9)

∆d,k(f) = ∠
XR(t, f)

XL(t, f)
+ 2πp, (10)

where∠ is the angle operator. The coefficientp shows that
the phase can be determined up to a modulo2π factor. In fact,
the phase becomes ambiguous beyond 1500 Hz, according to the
Duplex Theory.

Obtaining estimations of the azimuth based on the ILD and
ITD information (for eachp candidate) is simply a matter of in-
verting Equations (1) and (2).

The detected locationθ is the one that minimizes the distance
betweenθL andθT,p, where

θL(t, f) = arcsin

„

ILD(t, f)

α(f)

«

, (11)

θT,p(t, f) = arcsin

„

c · ITDp(t, f)

r · β(f)

«

. (12)

TheθL(t, f) estimates are more dispersed, but not ambiguous
at any frequency, so they are exploited as the azimuth reference.
The optimization problem is equivalent to the finding of the right
modulo coefficientp that unwraps the phase of theθT,p(t, f) esti-
mate.

After Viste [1], a good solution is theθT,p(t, f) which is near-
est toθL(t, f), as it exhibits a smaller deviation:

θ(t, f) = θT,m(t, f), (13)

with m = argminp |θL(t, f) − θT,p(t, f)| .
In practical terms, it is enough to restrict the choice ofp among in
the pair (⌈pr⌉, ⌊pr⌋), where

pr =

„

f · ITD(θL, f) −
1

2π
∠

XL(t, f)

XR(t, f)

«

. (14)

For each frequency bin of each discrete spectrum, an azimuth is
then estimated.

3.1. Histogram based localization and identification of the num-
ber of sources

For each frequency bin’s azimuth, we compute its corresponding
power, and add it to the others in a spatial histogram (see [4]). The
locations of the sources are obtained as the abscissa of the domi-
nant peaks in the energy histogram. We leveled out the histogram
and applied a threshold in order to refine the estimations, and to
remove erroneous detected sources (see Figure 2). The number of
local maxima is an estimate of the number of sources.
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Figure 2: Histograms derived from a mix of 3 speech sources at
(−80◦, +35◦, +80◦). From top to bottom: raw histogram, leveled
out histogram and capped histogram at−40 dB.
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3.2. EM with MDL based localization and number of sources
identification

Here we collect the azimuth of each frequency bin, then we com-
pute the underlying Gaussian Mixture Model with Expectation
Maximization combined with the Minimum Description Length
criterion, we obtain source locations and number of sources.

3.2.1. Gaussian Mixture Model

The sources are not exactly WDO, thus for each source we obtain
a distribution around the true value. We characterize each source
in the mix with a Gaussian representation. We then considered the
mix as aK Gaussian (K-GMM):

PK(θ|Γ) =
K

X

k=1

πk φk(θ|µk, σk) with πk ≥ 0 and
K

X

k=1

πk = 1

(15)
whereΓ is a multiset ofK triples (πk, µk, σ2

k) which denotes all
the parameters of the model;πk, µk, andσ2

k indicate respectively
the weight, the mean, and the variance of thek-th Gaussian in:

φk(θ|µk, σk) =
1

p

2πσ2
k

exp

„

−
(θ − µk)2

2σ2
k

«

. (16)

K represents the number of sources andΓ is the complete set of
parameters. In one approach we use the EM combined with the
penalty criterion MDL.

3.2.2. Minimum Description Length

The MDL is a criterion suggested by Rissanen [8] to find the op-
timal GMM structure and its number of sources by attempting to
minimize the number of bits needed to code both the dataθ and
the parameterΓ. It is computed with:

MDL(K, Γ) = − log PK(θ|Γ) +
1

2
L log(NM) (17)

with L = K(1+M + (M+1)M
M

), N is the number of data samples
andM is the dimension of the mean vector, which, in this case is
one (one dimensional azimuth data).

The maximization of the MDL is a complex task, since for
each number of sourcesK an EM algorithm must be run. By
starting with a high value ofK, the number of sources is reduced
by merging one pair of clusters(u, v) that minimizes the distance
d(u, v) [9].

3.2.3. Expectation Maximization

Expectation Maximization is a well-known method to estimate pa-
rameters in mixture densities. The idea is to complete the observed
dataθ with an unobserved variablek to form the complete data
(θ, k), wherek ∈ {1, · · · , K} indicates the index of the Gaussian
component from whichθ has been drawn.

EM is an iterative algorithm, at each iteration we calculate
the optimal parameters which increase the log-likelihood of the
mixture locally.

We obtain the following update relations:

πk ←

P

θ p(θ) PK(k|θ, Γ)
P

θ p(θ)
(18)

µk ←

P

θ p(θ) θ PK(k|θ, Γ)
P

θ p(θ) PK(k|θ, Γ)
(19)

σ2
k ←

P

θ p(θ) (θ − µk)2 PK(k|θ, Γ)
P

θ p(θ) PK(k|θ, Γ)
(20)

wherePK(θ, k|Γ) is the posterior probability or the degree to
which we suppose the data was generated by the Gaussian compo-
nentk. One we have the data, it is computed with Bayes’ rule:

PK(k|θ, Γ) =
πk φk(θ|µk, σk)

PK(θ|Γ)
(21)

The accuracy of the EM may be influenced by the initial parame-
ters, because of possible local maxima trap.

Our EM implementation re-used parts of Bouman’s cluster
package [9].

Our EM procedure operates as follows:

1. Initialization step
• initialize K with a large number of classesKinit

• initialize the weights equally, the means linearly, and the
variances with the data variance:
K = Kinit, πk = 1/K, σ2

k = var(θ) and
µk = θ(n) wheren = ⌊(k−1)(N −1)/(Kinit −1)⌋+1.
• set a convergence thresholdǫ

2. Apply EM algorithm with Equations (21), (18), (19), (20)
• computeMDL(K, Γ) with Equation (17)
• if change inMDL(K, Γ) less thanǫ recordMDL(K, Γ), Γ
• if K > 1, reduceK by merging the 2 nearest compo-
nents, thenK ← K − 1 and go back to Apply EM step
else stop (chooseK∗ andΓK∗

than minimize theMDL
value).

3. The number of sources estimate isK∗, and the located
sources are theµ∗

k with priorsπ∗
k and variancesσ2

k.

4. SOURCE SEPARATION

4.1. Source Filtering Algorithm

In order to recover each sourcek, we select and regroup the time-
frequency bins belonging to the same azimuthθ. We use two dif-
ferent masks to measure the proximity of each source.
The first allocates the energy of each bin to the sourcek according
to its posterior probability (derived from EM). This is the proba-
bilistic Maximum A-Posteriori (MAP) mask given with:

Mk(t, f) = PK(k|θ(t, f), Γ). (22)

The second mask assigns the energy of each bin without shar-
ing to the sourcek with the maximum LikelihoodLk. This is the
binary mask based on maximum Likelihood given with:

Mk(t, f) = 1{k=argmaxjφj(θ(t,f)|θj ,σj)} with j = 1 · · ·K. (23)

In practical terms, to avoid audible distortion, we consider a
minimum mask value.
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For each sourcek, the pair of short-term spectra are recon-
structed following:

SL(t, f) = Mk(t, f) · XL(t, f) (24)

SR(t, f) = Mk(t, f) · XR(t, f) (25)

The time-domain version of each sourcek is obtained through
a short-time inverse Fourier transform.

5. THE MOSPALOSEP APPLICATION

At the present time, the MOSPALOSEP platform is implemented
under LabWindows/CVI with a graphical user interface (see Fig-
ure 3). In theInput frame, the platform allows the processing of
a stereo signal samples coming from a wav file. The separated
source signals can be broadcast through the sound card or saved in
a wav file for future use (seeOutput frame).
In theSpatialization and Mixing frame, the stereo signal can also
be synthesized artificially given the available spatialization meth-
ods (e.g. MHRIR using HRTFs or SSPA [10] using a parametric
binaural model), which projects each source along the horizontal
plane to a target azimuth. Listening of the previews is possible
through the push-buttons provided for that purpose. Then we can
mix the spatialized sources by dropping themix selected button.
In the localization frame, we can choose a localization method
among EM localizer, and different Histogram localizers, in the lat-
ter case, it is possible to level out and cap the power histogram. In
the current implementation, we fix the resolution of the histogram
to 361 discrete azimuths between−180◦ and180◦.
In the Demixing frame, the number of sources is necessary. We
envisage a maximum of 4 sources in the mix. The EM parameters
can be determined automatically or imposed by filling the edit text
spaces. The probabilistic source separation with the MAP mask
is the default setting, you can switch to the source separation us-
ing the ML mask. A performance measure is only possible with
synthetic mixtures, since the original sources are essential for the
computation of SNR and SIR. The Plot frame provides different
views such as original signals in time or frequency domain, sepa-
rated signals and histogram.

6. SIMULATION RESULTS

6.1. Localization Performance Analysis

We compare the localization and the number of sources estimation
of the EM based localization (EM-loc) to the histogram based lo-
calization (Histo-loc), we make a difference between the localiza-
tion with the raw histogram (Histo-loc-raw), with the leveled out
histogram (Histo-loc-smooth) and with the leveled out and capped
histogram (Histo-loc-threshold). The histograms are normalized to
the maximum value, we use a threshold of−40 dB. The test sig-
nals are white noises spatialized to a target azimuth using SSPA.
We are exploring the case of one source mix. In our experiments,
all signals are 2 seconds long with a sampling frequency of44.1
kHz. We use a sliding Hanning window of2048 samples and
a 50% overlap between two consecutive windows. For the His-
togram based methods, we choose a location (among the estimated
locations) which is nearest to the theoretical location. In the EM-
loc method, we choose the estimate with the highest prior proba-
bility.

The results show that the 3 Histo-loc approaches find the target
azimuth with a average error of1◦ (see Figure 4) over the az-
imuth space, while the EM-loc makes almost no error in the range
[−65◦, +65◦] (see Figure 4). Moreover, the EM-loc has a sta-
ble number of sources identification over all azimuths, it overesti-
mated the number of sources by 2 to 3 sources. Despite the raw
and leveled out Histo-loc methods overestimation of the number
of sources, the Histo-loc-threshold is globally better, with a con-
vergence on the exact number of sources when the source nears
the center position (0◦).
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Figure 4:Localization error per azimuth for different localization
methods. Case of one-source mix.
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Figure 5: Number of sources per azimuth for different number of
sources identification methods. Case of one-source mix.

6.2. Source Separation Performance Analysis

We evaluate the source separation algorithms using a probabilistic
MAP mask and a ML mask. We used mix of2 to 4 instrumental
sources.
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Figure 3:The MOSPALOSEP Graphical User Interface under LabWindows/CVI.

We use 4 monophonic sources (bass, percussion, guitar and
piano) [11] with a sampling frequency of44.1 kHz. The signals
are spatialized artificially using Equations (5) and (6), and then
mixed to form a binaural signal. Musical signals are particularly
difficult to separate in comparison with speech signals, as they do
not satisfy the WDO condition. Indeed, the spectrograms of the 4
sources show that the sources have a significant collision probabil-
ity for frequencies in range[0, 10] kHz (see Figure 6).

Figure 6: Spectrograms of the four sources for simulations, from
left to right, top to bottom: bass, percussion, guitar and piano .

As in any source separation application, the ear is the first
quality assessor of the extracted sources. In order to measure the
robustness of the systems to interference and to global noise, we
use the Signal to Interference Ratio (SIR) and the Signal to Noise

Ratio (SNR), expressed in decibels (dB). In fact the SNR consid-
ers all discernable noises (musical noise, artifacts, interference).
See [3] for details about SNR and SIR calculations. The SIRI and
SNRI represent the SIR and SNR Improvement between the input
and output SIR and SNR values.

In the case of two sources, there are three possible source com-
binationss1, s2 or (s1, s2). A maximum of two sources contribute
to the energy of the mix point(t, f). The binary ML mask assigns
the frequency energy tos1 or s2 without taking into account the
case where both sources are active. While the MAP mask always
anticipates an overlap situation. In the ideal case, the MAP mask
is analogous to the ML mask. For the source separation stage, we
use a modified EM approach; in fact for the GMM computation,
only the set of discrete azimuths covered by the leveled out his-
togram are used with their corresponding average energy.

The Figure 7 depicts a typical result of separation. Thebassat
0◦ and thepercussionat 15◦. We note that the MAP mask based
estimates present less interference, but have energy levels lower
than the originals, which could lead to some distortion. Estimates
from the ML mask have less distortion, but they are marred by
much interferences. Figure 7 confirms that the MAP mask is su-
perior to ML mask for an equivalent input level of distortion. The
average SIR gains are higher than 12 dB, with a SNR gain of ap-
proximately 7 dB (see Table 1).

Moreover, informal listening tests reveal that MAP masks sep-
arated sources are preferable to those from the ML mask1.

In the case of 3 and 4 sources, we have respectively 7 and 15
possible source combinations, thus a higher collision probability.
Table 1 certifies that SIR levels increase with the source number,
and the quality of estimates is also affected. The SIR gain remains
higher than 10 dB, but the SNR decreases slightly compared to the
case of two-source mix. The SIR improvement, despite of more
sources, can be explained by the fact that the input SIR is too low,

1http://recherche.esigetel.fr/~akg
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Figure 7: (row 1) Mixtures of two instrumental sources (bass,
0◦) and (percussion,−15◦), (row 2) originals, (row 3) separated
sources with MAP mask, (row 4) separated sources with ML mask.

source (θ) SIR in (dB) SIRI (dB) SNRI (dB)

bass (0◦) 8.34 9.36 1.02
percussion (+45◦) -7.19 18.71 8.77

bass (−20◦) -6.89 11.07 12.73
percussion (0◦) -2.93 19.48 12.03
piano (+15◦) -0.69 16.53 8.07

bass (−15◦) -3.36 16.41 8.6
percussion (0◦) -2.15 12.34 7.4

guitar (15◦) -3.07 14.05 7.75
piano (+30◦) -11.35 15.26 12.07

Table 1:Source separation performance for the MAP mask given
binaural mixtures with 2, 3 or 4 sources. We measured the SIR and
the SNR, and the obtained gains. We have SIR gains greater than
10 dB, and SNR gains greater than 5 dB.

and a improvement provides a real gain in value. The tests indi-
cate that the ML mask becomes less useful with a rising number
of sources. For example, the superposition of two opposing side
sources can give rise to a point between the two sources, which
corresponds to the third source, and makes the separation more
complex.

We also explore four-source mix, and we notice the same ob-
servations as in the three-source case. Still, we have interference
gain greater than 10 dB and a slight degradation of SNR. The sep-
aration performance seems to be nearing its limit (Table 1). The
overall quality of estimates has also deteriorated audibly. These
tests demonstrate that the probabilistic posterior mask overcomes
the binary mask in complex signal separation.

7. CONCLUSIONS AND FUTURE WORK

We presented the MOSPALOSEP platform for binaural source lo-
calization and separation. We showed comparison results between
EM based localization and histogram based localization. We made
an analysis of the number of sources identification, and showed
that the EM with MDL is a good candidate for this purpose in

audio applications. We also compared different source separa-
tion methods, one using a posterior probability mask that takes
into account the possibility of a superposition amongst sources.
This latter overcomes the binary mask separation. The results
showed significant gains in terms of interference and distortion re-
duction. Next, we will enrich the toolbox with other methods and
performance metrics referenced in the literature for more compar-
isons. We hope to study the influence of the spatial resolution of
sound sources, and also to investigate the localization and sepa-
ration methods in case of added spatial-distributed noise on both
signals. We plan also to give more insight in the cases where the
WDO constraint is severely violated.
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