
Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

A METHOD OF GENERIC PROGRAMMING FOR HIGH PERFORMANCE DSP

Vesa Norilo

Centre for Music and Technology,
Sibelius-Academy
Helsinki, Finland

vnorilo@siba.fi

Mikael Laurson

Department of Signal Processing and Acoustics,
Aalto University
Espoo, Finland

laurson@siba.fi

ABSTRACT

This paper presents some key concepts for a new just in time
programming language designed for high performance DSP.
The language is primarily intended to implement an updated
version of PWGLSynth, the synthesis extension to the vi-
sual musical programming environment PWGL. However,
the system is suitable for use as a backend for any DSP plat-
form. A flow control mechanism based on generic program-
ming, polymorphism and functional programming practices
is presented, which we believe is much better suited for vi-
sual programming than traditional loop constructs found in
textual languages.

1. INTRODUCTION

The research project presented in this paper builds on the ex-
perience gathered during the development of PWGLSynth,
a synthesis library for PWGL. PWGLSynth is an interpreted
sublanguage in PWGL, consisting of boxes, DSP modules
built in C++. A visual graph represents a configuration
of such boxes, and the PWGLSynth backend takes care of
scheduling and executing the C++ modules in correct order.

The design based on a number of building blocks writ-
ten in a compiled language being combined in a visual envi-
ronment is a common one. Perhaps the most widely known
platform based on this idea is the Pure Data family[1].

Functional constructs, on the other hand, are often well
suited for visual representation[2]. Functional, high level
languages are traditionally considered as not being suitable
for real time use, but this perception is rapidly changing
due to developments in high performance programming lan-
guages such as Faust[3].

The rest of the paper is organized as follows. Section
2, Towards a general language presents the motivation for
pursuing user-defined iterative behavior. Section 3, Types
and polymorphism for flow control, presents a type system
and a method for polymorphic function specialization. Fi-
nally, the state and impact of the research are discussed in
conclusion.

2. TOWARDS A GENERAL LANGUAGE

PWGLSynth has been successfully used in many interest-
ing applications, such as score-driven expressive control of
physics based models of acoustic instruments[4]. One of
the most useful features of the system is the ability to han-
dle multichannel signals, the vector metaphor[5].

Vectors make it possible for a single box to represent
many similar operations on a number of different signals.
This can be leveraged in the case of polyphonic instruments,
or indeed any scenario where multiple instances of the same
algorithm operating on different signals is desirable. The
vector metaphor presents capabilities similar to loop con-
structs in textual programming languages. While useful, the
PWGLSynth vector is limited. Only flat 1D vectors are sup-
ported.

Initially this sufficed for DSP applications, as the se-
mantic meaning of a vectored signal was simply a multi-
channel audio signal such as stereo or 5.1. However, as
more uses were found for vectors, the limitation became
more obvious.

2.1. Nested vectors

Consider a polyphonic instrument with a number of voices,
each of them stereophonic. The logical representation of
such a case would be an n-element vector, where n is the
number of voices. Each element would then be a 2-element
vector, representing a stereo signal.

This is an example of vector nesting. Such constructs
can be used to structure signals and data, and are supported
by most general programming languages. In musical pro-
gramming, SuperCollider[6] is known for excellent use of
this idiom.

2.2. Looping and flow control

Nested vectors is a simple yet demonstrative case where the
behavior desired from vectors is closer to a loop or a flow
control structure in a traditional textual language than the
plain multichannel audio idiom it was designed for.

DAFX-1

http://cmt.siba.fi
mailto:vnorilo@siba.fi
http://www.acoustics.hut.fi/
mailto:laurson@siba.fi

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

To satisfactorily address this kind of case it would make
sense to enhance the vector metaphor with features found in
loop constructs in many general programming languages. In
the best case, it would enable PWGLSynth to do away with
the built-in vector concept and give full control of iterative
behavior to the patch designer.

However, looping constructs are notoriously hard to ex-
press visually. While PWGL is a visualization of an abstract
syntax tree and therefore perfectly capable of expressing
any construct in the underlying LISP language, LISP loops
are awkward and counterintuitive when displayed visually.

Functional programming practices are the ones that of-
ten translate best into visual form[2]. Recursion, the stan-
dard pattern for iterative functional code, might therefore be
a better alternative for a visual environment.

3. TYPES AND POLYMORPHISM FOR FLOW
CONTROL

The vector metaphor in PWGLSynth was an effective so-
lution for the interpreted case. Interpreted code gains ef-
ficiency when the syntactic structure resembles the actual
execution path taken by the CPU. This has worked against
adoption of principles such as recursion as a loop construct,
since efficiently handling this case would greatly complicate
the interpreter.

Recent development efforts in the synthesis backend are
geared towards just in time compilation[7], allowing more
comprehensive transformation of code structure between the
visual patch and actual machine code. The compiler can be
optimized for cases such as recursion. The visual syntax
no longer needs to map closely to a structure efficient to
execute in a C++ interpreter. These developments inform
examination of a desirable synthesis language in terms of
general computer science and theory of programming lan-
guages.

3.1. Functional design patterns

Let us examine a standard box in PWGLSynth, add-vector.
This vectored primitive can receive to vectors of numbers,
and as expected, computes a result vector as an element-
wise sum.

For comparison purposes, the functionality of add-vector
is shown implemented in C, Listing 1, and an elegant func-
tional language called Haskell[8], Listing 2.

Listing 1: add-vector in C language
void add_vector(float *a, int a_n,

float *b, int b_n, float *c)
{
int c_n = min(a_n, b_n);
for(int i=0;i<c_n;i++) c[i] = a[i] + b[i];

}

The C version has a notable procedural feature: the vec-
tor index variable i. This variable represents the loop state,
and is the most difficult part to express visually.

Listing 2: add-vector in Haskell
addVector _ [] = []
addVector [] _ = []
addVector (a:as) (b:bs) = (a+b) : addVector as bs

The Haskell routine is given three definitions. Let the
arguments to the function addVector be called a and b. The
first two definitions state that if either a or b is an empty
vector – or list, in Haskell nomenclature – the result is also
an empty vector. The third definition applies for non-empty
lists: the result of the function call is the sum of first ele-
ments of a and b, appended by the result of an addVector
call with parameters as and bs which are simply a and b,
stripped of their first elements.

Any call to addVector will therefore result in a number
of successive addVector calls until the elements in either a
or b run out. In that case, nothing is appended to the re-
sult vector and the call sequence is complete. For further
discussion on Haskell, the reader is referred to literature[8].

Nowhere is there a state variable. This is the standard
way to define iterative behavior in a functional language,
and is expected to map neatly to visual representation.

3.2. Enhancing the type system

There is a further great benefit to the Haskell way of depict-
ing add-vector. In the C Listing 1, single precision float-
ing point is specified and enforced. The Haskell Listing
2 is generic, meaning that any data type capable of being
summed by the operator + can be contained in the argument
vectors.

PWGLSynth has previously only supported single pre-
cision floating point numbers. This has made the type sys-
tem trivial and easy to manage, as there is only one type –
a vector of single precision floating point numbers, with a
single element vector begin a common special case.

By adapting the three structural primitives of LISP[9],
we can assemble and parse nested vectors of any dimen-
sionality and topology. These primitives are shown in Table
1.

Table 1: Data structure parsing primitives
pair(x,y) construct a pair of x and y
first(x) retrieve the first member of pair x
rest(x) retrieve the second member of pair x

A one-dimensional vector of three floating point num-
bers, expressed as pairs, would then have the structure shown
in Listing 3

DAFX-2

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

Listing 3: Vector of three floating point numbers as pairs
(FLOAT and (FLOAT and (FLOAT and NOTHING)))

The choice of terms first and rest reflect the conventional
method of traversing a list in a functional manner in lan-
guages such as LISP[9] or Haskell[8].

3.3. Polymorphic functions and pattern matching

As can be noted in Listing 2, multiple function definitions
are given for a single symbol. A function with multiple
forms is termed polymorphic. It is notable that no branches
or logic operators are present in any form of the function;
the recursion flow control is handled exclusively by pat-
tern matching, selecting the appropriate form of the func-
tion based on argument type.

For a statically typed environment like PWGLSynth, this
presents an interesting possibility. Complete type inferral
for the entire patch can be performed just before starting
synthesis. Flow control that depends on nothing but argu-
ment type can thus be resolved at compile time, resulting in
very efficient code.

3.3.1. Generic programming and polymorphism

When multiple forms of a function are available, a form
must be selected every time a function call is made. The
method for this selection is the main novel idea presented in
this paper. The mechanism is inspired by duck typing, the
informal term programmers use to indicate that the type of
an object is determined by its capabilities. “If it quacks like
a duck, and walks like a duck, it is a duck.” Duck typing is
possible in many high level scripting languages.

Another source of inspiration is the template metapro-
gramming in C++. Template functions are generic functions
that are specialized at compile time for any given set of ar-
guments passed to the function. In effect, separate versions
of the template function are created for each function call
and argument type.

This idea of specialization can be further enhancing by
allowing polymorphic templates. In effect, all functions in
the PWGLSynth backend language are such polymorphs.
Whenever a function call is encountered, each form of the
function is tried by the compiler in a linear order specified
by the programmer. Supplied argument type is fed into the
abstract syntax tree of the node, and types for all nodes in
the tree are inferred.

Certain nodes only accept arguments of certain types.
These include the first and rest primitives shown in Table 1,
which require a pair type. Arithmetical operations will re-
quire an atomic number type, and binary operations require
compatible types. These specialized nodes, kernel nodes,
represent the operations from which generic functions are
built. If a wrong kind of argument is supplied to a kernel

node, specialization fails. Instead of fatal compiler error,
only the enclosing function form is rejected.

In this case the caller function will proceed to the next
available form of the callee function, attempting to special-
ize it. If no form of the callee function is suitable, the caller
function fails and the error is propagated down one level in
the call tree. Therefore, specialization details anywhere in
the call tree will control polymorphic function selection all
the way down to the root of the tree.

3.4. PWGLSynth add-vector primitive implementation

Making use of all the features discussed so far, an imple-
mentation of the original PWGLSynth add-vector box, given
here as both pseudocode Listing 4, and as a visual mockup
of a PWGL patch, shown in Figure 1. It is instructive to
contrast these examples to Listings 1 and 2.

polymorph

A

1
2

empty

A

first

A

of-pair

rest

A

of-pair

first

A

of-pair

rest

A

of-pair

arg(x)

A

arg(y)

A

+

S

number
args

call-funct

A

func
y
x

pair

A

one
other

Figure 1: Visual version of the add-vector function

When presented with the function call, the compiler first
tries to apply the latter, more specialized function. It returns
the pair built of the sum of the first elements of both argu-
ments and the result of a recursive call for the remaining
elements in both arguments.

Once the end of one of the argument vectors is reached,
the function fails as the type of argument(x) or argument(y)
can not be split. The compiler resorts to the next available
form of the function, returning an empty vector.

Listing 4: add-vector in the backend language
function add-vector = empty
function add-vector = pair(
first(arg(x)) + first(arg(y)),
add-vector(rest(arg(x)), rest(arg(y)))

3.4.1. Adding support for nested vectors

It is surprisingly easy to add support for arbitrary dimen-
sions of nested vectors. The pseudocode Listing 5 gives
such a function.

DAFX-3

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

Listing 5: add-vector with support for nested vectors
function flat-first = arg(x)
function flat-first = first(arg(x))

function add-vector = empty
function add-vector =
flat-first(arg(x)) + flat-first(arg(y))

function add-vector =
pair(add-vector(first(arg(x)), first(arg(y))),

add-vector(rest(arg(x)), rest(arg(y))))

Two polymorphic functions are specified, flat-first and
add-vector. As long as both arguments x and y are pairs,
the add-vector function splits the pairs and delegates both
halves of the pairs to nested add-vector functions, as shown
in the third form of the function.

When either x or y is no longer a pair, indicating end
of vector or non-vectored signal, the second form is cho-
sen. This form retrieves the first atom of both arguments,
regardless of structure, using the function flat-first.

This results in two atoms being added together in the
second form of add-vector. For the ’empty’ or ’nothing’
type that signifies the end of a vector, the addition fails, re-
sulting the first form of add-vector being used. It simply
returns an empty list, terminating the recursion.

3.5. Impact of the type system

As shown above, the new examples show far-reaching def-
initions of vector behavior expressed within the language.
Any user of the system could conceivable redefine such as-
pects of the system without sacrificing performance.

This level of control is difficult to achieve with a tra-
ditional interpreter, as the requisite generality would bring
about an unacceptable performance penalty. The problem is
resolved here by just in time compilation, which enables
more drastic optimization and transformation of the user
supplied algorithm.

4. CONCLUSION

A type system and a method for polymorphic generic pro-
gramming was presented, enabling visually logical repre-
sentation of repetitive routines. The recursive style of func-
tional languages was adapted, and enhanced with a deep
polymorphic specialization method. The novelty of the method
lies in the powerful abstraction afforded by the axiomatic
core language combined with a static structure – yielding a
new balance of high level programming concepts and raw
computational performance.

The backend compiler is currently in development. The
version predating the enhanced type system currently pro-
duces very high performance autovectorized code [7]. The
new version at this stage produces fast scalar code, but au-
tovectorization is yet to be ported over. The type system has

no negative impact on the performance, as all pair handling
code will translate to straightforward pointer arithmetic –
because of the rigid static typing, all pair structures, no mat-
ter how complicated, can be internally represented as flat ar-
rays. The extensive specialization negotiation is carried out
entirely at compile time, not affecting run time performance
at all.

The compiler is expected to be released as a C-callable
library before DaFX 2010, containing facilities for build-
ing functions and executing them. The compiler can serve
as a high performance computation engine for a variety of
repetitive numerical tasks, among them musical DSP.

5. ACKNOWLEDGMENTS

This work has been supported by the Academy of Finland
(SA 114116 and SA 122815).

6. REFERENCES

[1] Miller Puckette, “Pure data,” in Proceedings of the In-
ternational Computer Music Conference. International
Computer Music Association, 1996, pp. 269–272.

[2] Joel Kelso, A Visual Programming Environment for
Functional Languages, Ph.D. thesis, Department of En-
gineering, Murdoch University, 2003.

[3] Yann Orlarey, Albert Gräf, and Stefan Kersten, “Dsp
programming with faust, q and supercollider,” in Pro-
ceedings of the 4th International Linux Audio Confer-
ence. 2006, pp. 39–47, ZKM.

[4] Mikael Laurson, Vesa Norilo, and Mika Kuuskankare,
“PWGLSynth: A Visual Synthesis Language for Vir-
tual Instrument Design and Control,” Computer Music
Journal, vol. 29, no. 3, pp. 29–41, Fall 2005.

[5] Mikael Laurson and Vesa Norilo, “Multichannel Sig-
nal Representation in PWGLSynth,” in Conference on
Digital Audio Effects, 2006.

[6] James McCartney, “Continued evolution of the super-
collider real time environment,” in Proceedings of the
ICMC’98 Conference, 1998, pp. 133–136.

[7] Vesa Norilo and Mikael Laurson, “Kronos - a vectoriz-
ing compiler for music dsp,” in Proceedings of DaFX,
2009.

[8] Simon Peyton Jones, Haskell 98 language and li-
braries: the revised report, Cambridge University
Press, 2003.

[9] Guy L. Steele, Common LISP : The Language, Digital
Press, 2nd edition, 1990.

DAFX-4

	1 Introduction
	2 Towards a general language
	2.1 Nested vectors
	2.2 Looping and flow control

	3 Types and polymorphism for flow control
	3.1 Functional design patterns
	3.2 Enhancing the type system
	3.3 Polymorphic functions and pattern matching
	3.3.1 Generic programming and polymorphism

	3.4 PWGLSynth add-vector primitive implementation
	3.4.1 Adding support for nested vectors

	3.5 Impact of the type system

	4 Conclusion
	5 Acknowledgments
	6 References

