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ABSTRACT

Modern graphics processing units (GPUs) are massively parallel
computing environments. They make it possible to run certain
tasks orders of magnitude faster than what is possible with a cen-
tral processing unit (CPU). One such case is simulation of room
acoustics with wave-based modeling techniques. In this paper we
show that it is possible to run room acoustic simulations with a
finite-difference time-domain model in real-time for a modest-size
geometry up to 7kHz sampling rate. For a 10% maximum disper-
sion error limit this means that our system can be used for real-
time auralization up to 1.5kHz. In addition, the system is able to
handle several simultaneous sound sources and a moving listener
with no additional cost. The results of this study include perfor-
mance comparison of different schemes showing that the interpo-
lated wideband scheme is able to handle in real-time 1.4 times the
bandwidth of the standard rectilinear scheme with the same maxi-
mum dispersion error.

1. INTRODUCTION

The graphics processing units (GPUs) of personal computers have
developed a lot during the last decade and nowadays they are ac-
tually massively parallel computing environments that have plenty
of applications outside graphics. In practice, GPUs have enabled
running of certain high-performance computing tasks on every-
ones desktop. Especially, in room acoustics, employing a GPU in
wave-based simulations has opened completely new possibilities,
even so that real-time simulation on a limited bandwidth is possi-
ble.

The finite-difference time-domain (FDTD) technique is a wave-
based method that is particularly suitable for GPU computation.
FDTD simulations are commonly used in solving various fluid-
dynamic problems although in room acoustics they have not been
that popular. One reason for this is that FDTD simulations are
remarkably computation intensive. Especially at higher frequen-
cies the computational load can be excessive. For this reason, the
wave-based methods are typically used only at the lowest frequen-
cies. However, that is the range where the wave nature of sound
is dominant, and all the other modeling approaches, such as the
geometrical acoustics, fail.

In this paper we present a novel system capable of auralizing
arbitrary 3D geometries with digital impedance filter boundaries in
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real-time. In this context the term auralization means both mod-
eling of sound propagation and making those modeling results au-
dible. Our system is able to handle spaces of 100 m3 up to 7kHz
sampling rate. The system uses the central processing unit (CPU)
to handle audio input and output, to perform sample rate conver-
sions and required filters whereas the actual acoustic FDTD sim-
ulation is run on the GPU. By using this system, we compare the
computational performance of different explicit FDTD schemes in
practice. The results show the expected superiority of the interpo-
lated wideband scheme. Another investigated case is the compu-
tational load caused by different boundary conditions. The main
conclusion is that computation of the frequency indepedent bound-
aries is much faster than the use of digital impedance filters.

This paper is organized as follows. Section 2 covers the rel-
evant literature regarding GPU computation and room acoustic
modeling. Section 3 presents the applied FDTD method while Sec-
tion 4 discusses the basics of GPU programming. Our implemen-
tation and results are discussed in Sections 5 and 6, respectively.
Finally, Section 7 concludes the paper.

2. BACKGROUND

2.1. Room acoustic modeling

There are basically two different approaches for room acoustic
modeling, the wave-based methods and the ray-based methods
[1]. The former target at solving the wave equation numerically
whereas the latter neglect all the wave phenomena and sound is
supposed to act like rays. Both of them have advantages: the
wave-based methods excel at low frequencies while the ray-based
methods are most suitable for high frequencies.

Ray-based modeling

The ray-based approach, also known as the geometrical acoustics
(GA), has been used for over 40 years as the basic principle of
acoustic ray tracing was presented in 1968 by Krokstad et al. [2].
The other main GA technique, the image source method, was in-
troduced by Allen and Berkley in 1979 [3]. Those two form the
base for most of the room acoustic design software currently in
use. Both of these techniques have been developed further, and
numerous new variants of them have emerged. Lately, a unify-
ing mathematical framework for all the ray-based techniques, the
room acoustic rendering equation, was presented by Siltanen et
al. [4].
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Wave-based modeling

The currently used wave-based modeling methods can be roughly
categorized into three classes: finite element (FE), boundary el-
ement (BE), and finite-difference time-domain (FDTD) methods
[1]. In both FE and FDTD methods the space under study is dis-
cretized into volumetric elements while in the BEM the boundaries
of the space are discretized. Their computational loads depend di-
rectly on the number of elements in the mesh such that the smaller
the element, the more elements that are needed and the wider the
covered bandwidth is. Typically these methods are employed only
for modeling of low frequency behavior of rooms. The FE and
BE methods operate typically in the frequency-domain and are
best suited for modeling of static scenes. Out of these methods,
the FDTD technique is the most suitable for real-time auralization.
With a precomputation step even the BEM results can be used for
auralization of static scenes.

In FDTD methods the simulation progresses iteratively in time
steps. In the traditional FDTD methods two variables, sound pres-
sure and volume velocity, are needed and their values are updated
alternately [5]. However, it is possible to use only one variable
as well. The FDTD schemes can be divided into two groups: the
explicit schemes and the implicit schemes. The explicit schemes
are straightforward to implement as the values of the next time step
are computed solely based on the previous time steps. The implicit
FDTD schemes are more complicated as the new value of a node
depends on the new values of neighboring nodes thus requiring si-
multaneous solving of all nodes. In this paper, we limit ourselves
to one-variable explicit schemes although there exists intriguing
implicit schemes, such as the alternating direction implicit (ADI)
method [6], as well.

In all FDTD methods numeric dispersion is an inherent prob-
lem, and it affects the bandwidth which can be considered valid.
Kowalczyk and van Walstijn have investigated various FDTD
schemes thoroughly and according to their results the interpolated
wideband scheme (IWB) is the most efficient one from this point
of view [7]. The other scheme used in this study is the standard
rectilinear (SRL) scheme. It is worth noting that the SRL scheme
is the same as the original digital waveguide mesh [8, 9], and it has
been called also as the standard leapfrog scheme [7]. In this study,
we are interested only in the maximum dispersion, and thus meth-
ods removing the direction dependency in the dispersion, such as
in the interpolated digital waveguide mesh [10], are not relevant
here. In addition to dispersion, another challenge in FDTD mod-
eling has been the incorporation of frequency dependent boundary
conditions, but there is a recent well-described solution, called dig-
ital impedance filters, to that problem as well [7].

A competing approach to the previously listed ones, called
Adaptive Rectangular Decomposition (ARD), has been introduced
by Raghuvanshi et al. [11]. It is efficient and suits well for GPU
implementation. The fundamental difference of ARD when com-
pared to the other wave-based methods is that the space is divided
into maximally large rectangular subspaces, and inside each such
subspace no further discretization is needed, and the main compu-
tation lies in their interconnection.

Real-time auralization

The geometrical acoustics (GA) has been the base for real-time
auralization systems presented so far such as in the DIVA system
[12] and in the IKA-sim [13]. In those systems the sound prop-
agation modeling and audio signal processing are separated from

each other such that there is a GA simulation engine computing
reflection paths. It provides them to the signal processing module
that makes the paths audible. However, in practice the amount of
reflection paths gets really large, and only a fraction of them can
be handled individually and the rest of the paths have to be treated
by statistical means. This means that a diffuse reverberation unit is
needed and it will take care of the late part of the room impulse re-
sponse. Although those models may sound convincing, they lack
the physical base in the low frequency region as there is e.g. no
higher-order diffraction modeling and the phase of sound waves is
typically neglected. Incorporating those effects is difficult or even
impossible in the ray-based models. At best there has been systems
capable of modeling first order edge diffraction [14, 15], but they
can be considered highly approximative when compared to the ac-
curacy provided by the wave-base methods. One recent technique,
the frequency domain acoustic radiance transfer by Siltanen et al.
[16] presents another view on implementing real-time auralization.
It needs heavy pre-computation, but can cover the whole impulse
response in full bandwidth such that there is no need for a sepa-
rate reverberation algorithm. However, the technique is suitable
only for static geometries and stable sound sources and there is
no diffraction modeling. As far as we know there hasn’t been any
implementation of any wave-based technique capable of real-time
auralization.

The ultimate target in room acoustic simulation would be to
handle the whole audible frequency range with the more accurate
wave-based methods, but that goal is not reachable in the near fu-
ture as in those methods the workload grows steeply as a function
of the sampling frequency. In the techniques based on volumet-
ric grids, such as FDTD and FE methods, doubling the upper fre-
quency limit doubles the grid density in all three dimensions and
in addition the number of time steps gets doubled, altogether the
increase in the computational load is 24 = 16 fold. So, if we to-
day reach 4.4kHz sampling frequency with an FDTD simulation
we need more than 104 times as much computation to go up to
44.1kHz with the same method. Thus the best option still in the
near future is to have a hybrid method in which different frequency
ranges are modeled with different techniques as suggested e.g. by
Savioja et al. [17] and Murphy et al. [18].

2.2. GPU compute

General purpose GPU (GPGPU) computation has been under ac-
tive investigation since the introduction of programmable shaders
in 2001 [19]. Even after that the GPUs have been targeted mainly
for graphics, but the trend has been to increase the programmabil-
ity and to make the use of GPUs for non-graphics tasks as flexible
as possible. The old fixed-function graphics pipeline doesn’t dic-
tate the GPU computing capabilities anymore. At the moment a
programmer can see the GPU just as a massive collection of par-
allel computing units, and the programmer doesn’t have to know
anything of graphics programming.

The early days of GPGPU computation concentrated mostly
on getting around the limitations set by the graphics programming
APIs (application programming interface) although there are some
remarkable results already from that time as presented by Owens
et al. [20]. Only after introduction of the CUDA (compute uni-
fied device architecture) API by NVIDIA in 2006 [21] the GPU
computation has become really popular. At the moment, GPUs are
commonly used in computational sciences including such areas as
electromagnetics, astrophysics and brain research [22].
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In DSP (digital signal processing) GPUs have been proven to
be very effective in certain operations such as in fast Fourier tran-
forms [23], or in additive synthesis [24]. Use of GPUs on audio
related tasks has been studied earlier e.g. by Tsingos [25].

GPU-enhanced room acoustic modeling

Ray-based room acoustic modeling shares several similarities with
global illumination computation in computer graphics. Thus there
is a lot of computer graphics literature that directly benefits room
acoustic modeling. The first acoustic ray-tracing study utilizing
GPUs was published already in 2004 [26]. Another GPU-based
acoustic ray-tracing system with auralization capabilities has been
presented by Röber et al. [27]. The frequency domain acoustic ra-
diance tranfer is another example, in which the signal processing
required for auralization is performed on GPU [16]. In addition,
there are algorithms that have been developed to be more gener-
ally parallelizable such that they are suitable for any multi-core
processor, see e.g. [28, 29].

In this paper we concentrate on the frequency range where
wave phenomena are essential, and thus our focus is on the wave-
based methods. Most of them can be parallelized and will benefit
from use of GPUs. First studies in which GPUs were utilized to
solve partial differential equations with FEM have been published
by Rumpf and Strzodka [30]. The recent adaptive rectangular de-
composition technique is another example of wave-based model-
ing in which GPUs offer a remarkable performance gain [11].

The GPUs can help with the boundary element methods as
well and it is even possible to solve acoustic problems of realistic
size [31]. One simplified version of the boundary element method
is called the Kirchoff approximation. It can be used to compute
first order diffractions very efficiently. It has been shown that using
a GPU, it is possible to compute sound scattering at interactive
rates for up to 20 point frequencies in a model containing almost
100,000 triangles [32].

However, it seems that out of the wave-based techniques the
FDTD method is the most straightforward to parallelize. In an
FDTD simulation, the computation can be distributed to several
processors operating independently from each other. Röber et al.
were the first to report GPU implementation of the digital waveg-
uide mesh technique [33]. They achieved almost 70 fold perfor-
mance gain over a CPU implementation in a 2D case. They also
show results with 3D meshes, but they are not that impressive due
to the limitations of display drivers of that time. Another study
investigating parallelization of the digital waveguide mesh method
has been presented by Campos et al. in 2000 [34]. They used a
8-processor high-end SGI computer to test the performance gain
achievable by parallelization, and in the best case they report lin-
ear gain such that doubling the number of processors doubled the
performance as well. A very recent study on 2D acoustic model-
ing with GPU accelerated FDTD implementation reports over 70
fold performance increase over a CPU implementation with a one-
million node mesh [35].

3. FINITE-DIFFERENCE TIME-DOMAIN SIMULATION
USING COMPACT EXPLICIT SCHEMES

Typically the FDTD methods use rectangular grids although there
are numerous other possible mesh topologies as well. In this study,
we are limited to rectangular grids and compact schemes meaning
that in the computation only the nearest neighbors, in axial, 2D

Scheme a b λ d1 d2 d3 d4

SRL 0 0
√

1
3

1
3

0 0 0

IWB 1
4

1
16

1 1
4

1
8

5
8

− 3
2

Table 1: The key parameters of the standard rectilinear (SRL) and
the interpolated wideband (IWB) schemes.

diagonal, and 3D diagonal directions, of a node are needed in the
computation of its new value. Thus we need to discretize the space
to be modeled into a regular grid in which each interior node has a
connection to its 26 neighbors and one to itself. Kowalczyk et al.
have analyzed this scheme family and we utilize the coefficients
they suggest [7]. According to their notation the mesh is governed
by the following equation:

pn+1
l,m,i = d1(pnl+1,m,i + pnl−1,m,i + pnl,m+1,i+

pnl,m−1,i + pnl,m,i+1 + pnl,m,i−1)

+ d2(pnl+1,m+1,i + pnl−1,m+1,i + pnl−1,m−1,i+

pnl+1,m−1,i + pnl+1,m,i+1 + pnl+1,m,i−1+

pnl−1,m,i−1 + pnl−1,m,i+1 + pnl,m+1,i+1+

pnl,m+1,i−1 + pnl,m−1,i−1 + pnl,m−1,i+1)

+ d3(pnl+1,m+1,i+1 + pnl−1,m+1,i+1 + pnl+1,m−1,i+1+

pnl−1,m−1,i+1 + pnl+1,m+1,i−1 + pnl−1,m+1,i−1+

pnl+1,m−1,i−1 + pnl−1,m−1,i−1)

+ d4p
n
l,m,i − pn−1

l,m,i

(1)

with the coefficients

d1 = λ2(1 − 4a+ 4b), d2 = λ2(2 − 2b),

d3 = λ2b, d4 = 2(1 − 3λ2 + 6λ2a− 4bλ2).

where pnl,m,i stands for the sound pressure at time step n in loca-
tion [l,m, i]. The values of the coefficients λ, a and b are deter-
mined by the chosen FDTD scheme. It is worth noting that the
sampling rate of the mesh depends on λ such that fs = c

λ∆x
,

where ∆x is the grid spacing and c represents the speed of
sound. The digital waveguide mesh methods form a subset of these
schemes in which the relation of wave propagation speed and ∆x
is fixed based on the mesh topology, for example with a rectangu-

lar 3D digital waveguide mesh the λ =
√

1
3

.

In this study we concentrate on two of the schemes, the
standard rectilinear (SRL) and the interpolated wideband (IWB)
scheme. Their key parameters are listed in Table 1. The SRL
scheme was chosen since it is computationally efficient as only
one of the di coefficients, d1, is non-zero such that only six neigh-
bors are involved in the computation of Eq. (1). The other sparse
schemes having a zero value for some of the coefficients di are not
that efficient and thus they were left out. The IWB scheme was se-
lected since it has been shown to cover the widest frequency range
up to 0.5fs still having least dispersion [7]. This means that out of
the full schemes with all di coefficients having a non-zero value,
the IWB scheme suits best for real-time auralization.
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Figure 1: Typical GPU consists of dozens of streaming multiprocessors (SM) each having several parallel scalar processors (SP) operating
in single-instruction multiple-thread (SIMT) manner. All the SMs share a large off-chip global memory.

Boundary and edge nodes

Kowalczyk et al. describe how to implement the boundaries with
digital impedance filters (DIF) [36, 7]. In the derivation of that
boundary model there are so called ghost points that lie outside of
the actual mesh. In the final equations those nodes are eliminated
such that each ghost point is replaced by an infinite impulse re-
sponse (IIR) filter. A zeroth-order filter corresponds to frequency
independent impedance boundary condition. With higher filter or-
ders it is possible to describe frequency dependent boundary con-
ditions. It is worth noting that implementation of frequency inde-
pendent boundaries is clearly less memory consuming than that of
higher-order DIFs since there is no need for the actual DIF filter.
To find the equations for various boundary node types, see [7].

4. PROGRAMMING A GPU

Typical structure of a modern GPU is illustrated in Fig. 1. In
this structure the GPU contains several streaming multiprocessors
(SM) that are connected to each other by a interconnection net-
work. Furthermore, one SM consists of parallel processors that
share a fast access on-chip memory whereas data exchange be-
tween different SMs needs use of relatively slow global mem-
ory. Inside one SM, each processor executes the same instructions
whereas different SMs can have different execution patterns.

There are several possible APIs to program GPUs, and there
is no de-facto standard, yet. The OpenCL by Khronos Group [37]
is an attempt to that direction, but it is too early to predict if it
will attain enough of popularity to became the dominant API. At
the moment, the most popular API is the CUDA API by NVIDIA
[21]. Although it is vendor-specific, we have used it in this study
as it is the most mature API and quite similar to OpenCL.

The computation model in CUDA is based on threads that are
run in parallel on the GPU. CUDA provides a SIMT (single in-
struction multiple thread) interface to the GPU. In that model the
programmer writes a kernel that describes the behavior of one
thread, and after that the programmer has to launch enough of
threads to accomplish the task. The underlying CUDA runtime
takes care of actual running of those threads in parallel. This
paradigm is especially suitable for data-parallel problems, in which
the task can be described from point-of-view of one data item. This
is the case for FDTD simulations, since it is sufficient to have a ker-
nel that computes the value of Eq. (1) in one node, and then launch
one thread for each node in the mesh.

In CUDA, threads are grouped into warps. Each warp is exe-
cuted in one SM such that all the threads in a warp have the same
execution pattern. This means that if there is even one thread need-
ing some extra computation due to branching, all the threads in
that warp have to wait for the completion of divergent branch ex-
ecution of that thread. For this reason, it would be beneficial to
group the threads such that there is no branching inside a warp.
Different warps can have different execution patterns without any
extra performance penalty.

Although the processors on a GPU have enormous compu-
tation capability in total, it is not obvious how to fully utilize it
in practice. It is easy in cases where the amount of data is rel-
atively small, but in more typical cases the memory bandwidth
between the global memory and SMs becomes a bottleneck. For
example, a FDTD simulation with one million nodes and up-
date rate of 44.1kHz would need a data rate of at least 500GB/s
(3 layers/update × 106 nodes/layer × 44100 updates/second ×
4 bytes/node) and thus make it difficult to implement as the cur-
rent memory bus bandwidths are around 80-100 GB/s.

In addition to the bandwidth limit, there is a remarkable la-
tency in fetching data from the global memory. The on-chip mem-
ory, called the shared memory, is much faster than the global mem-
ory. However, use of the shared memory is more complicated and
needs special attention. In this study the shared memory is not
utilized at all. Part of the on-chip memory is dedicated to store
constants, and is called the constant memory. That memory area is
writable only from the CPU code, and the GPU threads have only
read-only access to that memory.

To hide the memory latencies, it is desirable to have as many
threads as possible in execution at a time. It is essential that there
are always some threads that can be executed while the others wait
for their memory fetches to finish. In practice, it is preferable that
there are at least tens of thousands of threads running in parallel.

Another technique to reduce the performance penalty caused
by the limited memory bandwidth and latency, is the use of cache
memory that provides fast access to the most often needed data
items. This concept has been used in CPUs for a long time but
has been practically missing in GPUs. Fortunately, this is not the
case anymore as e.g. in the Fermi architecture by NVIDIA [38]
there is a two-level cache hierarchy. It is a major improvement as
it makes programmers’ work much easier regarding performance
optimization. However, it is still important to write the code so
that there is a high level of cache utilization in order to realize the
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maximum performance benefits.

5. IMPLEMENTATION

The target of our implementation was to enable real-time aural-
ization for a limited bandwidth. The design specification included
sound propagation modeling in arbitrary 3D geometries from mul-
tiple simultaneous sound sources, and play back of the modeling
results for a moving listener. The resulting system consists of sev-
eral parts, and it employs both the GPU and the CPU.

Overall, the system (1) reads audio streams from files, (2)
downsamples them for the FDTD simulation, (3) feeds the signals
to the sound source positions in the mesh, (4) computes the mesh,
(5) reads the output signal from the listener position, (6) upsamples
that signal, (7) sends it to the audio output device. At the moment
the audio output is only monophonic. In the implementation, we
wanted to allocate the GPU completely to the FDTD computation,
and everything else is handled by the CPU.

5.1. Signal processing at CPU

The CPU was used to perform the required sampling rate conver-
sions. To keep this part simple, we restricted the possible con-
versions only to integer factors. For example, for a 48kHz input
signal the downsampling factor can be e.g. 8 or 10 corresponding
to the mesh update rates of 6kHz and 4.8kHz, respectively. The
applied anti-aliasing filters were Kaiser-windowed sinc-functions
[39]. Although this is not the optimal solution regarding the filter
lengths, it was clearly sufficient for this purpose since the mesh
computation on the GPU was the main bottleneck in computation.
The applied anti-alias filters were 256 tap long to guarantee high
quality conversions.

5.2. FDTD modeling on GPU

Computation of one time step in the FDTD simulation consists of
two consecutive kernel launches. In the first launch there are N
threads where N is the number of nodes in the mesh. It takes care
of updating the actual mesh for both nodes inside the mesh and
on the boundaries. In addition, it handles the nodes with a sound
source or a listener. In the second launch the number of threads
equals the number of boundary filters, and that is used to update
the DIFs (see Eqs. (39)-(41) in [7]).

Although the actual FDTD simulation is done one time step
at a time on the GPU, the communication between CPU and GPU
is done in larger blocks such that the input and output signals are
copied to and from the GPU memory in blocks. According to our
experiments it seems that increasing the block size above 64 sam-
ples doesn’t increase the performance any more.

Updating the actual FDTD mesh

Computation of one time step according to Eq. (1) requires infor-
mation from two previous time steps. However, it is possible to
store the values of time step n+ 1 on the same memory locations
as the values of time step n − 1 such that it is sufficient to have
only two separate memory areas, instead of three, to handle the
mesh. In addition, we store the node type explicitly for each node.
It tells if the node is a sound source or a listener. For boundary
nodes we explicitly store either the impedance of the boundary or
an identifier referring to the DIF used by that node. The memory

needed for the mesh, node types and DIFs is allocated from the
global memory. To speed up the computation of the mesh we use
the texture cache of the GPU. That is a one-level cache that has to
be configured by hand. In the future GPUs, such as in the Fermi
architecture by NVIDIA, there is no need to use this texture cache
anymore since there is real two-level cache hierarchy. All the con-
stants needed in the computation, such as di and λ, are stored in
constant memory.

The kernel applied in node updates is quite simple. It first
fetches the values of all the neighbors at time step n and the value
of the node itself at time steps n and n − 1. After that the type
of the node is checked. Most of the nodes are inside the mesh,
and for them the code corresponding Eq. 1) is called. For bound-
ary and edge nodes we use their corresponding equations. In the
end, the new computed value of the node is stored to replace the
value of time step n − 1. It is worth noting, that the only diver-
gent branching in the kernel is for the actual value computation as
all the memory fetches are performed for all the node types. In
addition, we have separate kernels for both schemes such that the
SRL computation can truly benefit of having to fetch only 6 neigh-
bor values instead of 27 values needed in updating with the IWB
scheme.

Sound sources and listeners are treated by the same kernel but
their speciality is that they have their own buffers for input and
output signals. If a node is a sound source, there is a plain as-
signment statement as the new excitation value is read from the
input buffer and set to the value of the node. Listeners are fully
transparent, and they are updated similarly to other mesh interior
nodes. In addition to that, the value of time step n is stored to
the listener output buffer. Actually, there are always two listener
nodes for one listener to enable smooth movements in the scene.
With this technique we can compute the actual output signal as a
linear cross-fade of those two listener signals thus avoiding tran-
sients when a listener moves from one node to another.

Updating boundary filters

In the construction of the mesh, we allocate one DIF for each
boundary node with a filter of order one or larger. The DIF update
kernel is such that one kernel will handle one DIF. The computa-
tion time depends on the order of the filter as is the case for any IIR
filter. The coefficients of the impedance filters are precomputed
and they are stored in the constant memory. The memory needed
for the actual filters is allocated from the global memory. For per-
formance reasons it is advantageous to organize the memory such
that threads in the same warp will access memory locations close
to each other.

6. SIMULATION RESULTS

The target of this study was to find out what frequency range can
be simulated in real-time for spaces of different size.

6.1. Simulation setup

Geometries

The performance of FDTD computation was tested in two different
rooms, the first one sized of a typical living room, and the second
one had a volume of a concert hall as listed in Table 2. For test-
ing the performance of the DIFs we used a third geometry. Plain
shoebox shaped rooms are too simplistic to be generalizable for
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Space Length Width Height Volume
Room 7m 5m 2.8m 98m3

Hall 40m 20m 15m 12000m3

Table 2: The dimensions of the two spaces used in the study.

realistic use scenarios. For this reason, we added more surfaces to
the concert hall such that the third setup had the same volume as
the concert hall, but the space was divided into 12 smaller rooms
thus increasing the number of boundary nodes.

Computer setup

The tests were run on a commodity PC having Intel Pentium Dual
CPU E2180 running at 2.00GHz and 2.0GB of RAM memory. The
GPU was Nvidia Quadro FX 5800 with 4.0GB of RAM mem-
ory. The GPU was connected to the PCIe (PCI Express) bus of the
mother board having 2 GB/s bandwidth.

The system was compiled and run with Microsoft Studio 2005
development environment under the Microsoft Windows XP Pro
SP3 operating system. For audio playback the Windows Wave-
Out API was used. The GPU code used the NVIDIA CUDA li-
brary [21].

6.2. Mesh computation performance

Test procedure

The performance of a simulation was measured by running it for
512 steps and measuring the time taken by that. For each case,
the maximum update frequency fs was searched by gradually de-
creasing the ∆x. As long as the measured time was shorter than
the actual duration of those samples, the simulation was consid-
ered real-time. It is worth noting that the chosen schemes have
different values of λ, and thus the same values of fs correspond to
different values of ∆x. In this setup, the boundary nodes were set
to have a frequency-independent impedance.

The chosen schemes can not be compared just by looking at
the maximum fs since they have different dispersion characteris-
tics. For this reason we set a threshold for the maximum allowed
dispersion, and that is used to get the upper limit frequency fl de-
scribing the actual valid bandwidth. There is no generally defined
maximum dispersion error for auralization, and the audibility of
dispersion depends heavily e.g. on the distance from the sound
source. In this study we use quite loose limit of 10% error that still
should be usable for some cases. The data presented by Kowalczyk
and van Walstijn [7] was used to determine this 10% dispersion
limit for both schemes, resulting in the following values, for the
SRL fl = 0.16fs, and for the IWB fl = 0.37fs. The maximum
dispersion error curves for both schemes are roughly of the same
shape and thus their relative performance does not depend on this
error limit but affects only the absolute valid bandwidth.

Results

The obtained results are presented in Table 3, in which N cor-
responds to the number of nodes in the mesh, and the last column
shows the relative performance compared to the SRL scheme in the
same setup. The maximum fl for the room geometry was 1.5kHz,
and thus it well covers the frequency range in which wave-based

∆x fs fl
Space Scheme (cm) N (Hz) (Hz) rel.

Room SRL 8.66 150336 6857 1063 1.00
Room IWB 8.46 161601 4056 1509 1.42
Hall SRL 27.13 598290 2190 339 1.00
Hall IWB 27.21 590205 1260 469 1.38

Table 3: Simulation performance of the SRL and IWB schemes in
two different geometries. Although SRL has a higher update rate
fs, the valid frequency range fl of IWB is 1.4 times that of the
SRL.

modeling is essential. Even for the concert hall-sized geometry the
acoustics can be simulated up to almost 500Hz.

The results show clearly that the IWB scheme provides roughly
1.4 times the bandwidth of the SRL scheme meaning that IWB is
about 1.44 ≈ 3.8 times more efficient than SRL. It seems that the
resulting mesh sizes (N ) are almost the same for both schemes
although their sampling rates have a remarkable difference. This
difference is caused by the fact that in the SRL scheme only six
neighbors are involved in the computation whereas in the IWB
scheme all 27 possible nodes are needed. This causes much more
computation and many more memory fetches, although most of
them should hit in cache.

Another result we obtained was that the number of sound
sources does not affect the performance in practice. We ran the
same setups with both one and eight simultaneous sound sources
and the results remained the same.

6.3. Digital impedance filter computation performance

Test procedure

The digital impedance filter performance was tested in two ge-
ometries, in the hall and in the hall which was divided into 12
smaller volumes. We used the same discretization of ∆x = 28cm
in all the cases. This resulted in total amount of 505 908 nodes
out of which 7.5% were boundary nodes in the hall meaning that
there were 41 298 DIFs to be computed. In the 12 room hall the
boundary node ratio was 14.1%. As a reference result we made a
simulation with a mesh with the same amount of nodes but such
that all of them were treated as normal nodes inside the mesh and
there were no boundary nodes at all. The simulation was run for
different filter orders up to 10th order such that filter order 0 cor-
responded to a node with frequency independent impedance and
they were treated without actual DIF computation. For each case,
the computation time of 512 time steps was recorded.

Results

Results of the DIF performance test are illustrated in Fig. 2. The
curves show the relative increase in the computation time as a func-
tion of the filter order. The results show that additional compu-
tational cost of the plain frequency independent impedance, i.e.
order 0, is minimal, even in the worst case it is less than 12%. In-
stead, introduction of the DIFs increase the computation time re-
markably. However, increasing the filter order above one increases
the computation time only modestly. The two different geometries
behave as expected such that in the hall model the relative increase
is smaller since the proportion of the boundary nodes is smaller

DAFX-6
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Figure 2: The relative increase in computation time of the whole
mesh as a function of the filter order such that in case ’0’ the
boundaries have a frequency independent impedance and there is
no actual filter. Need for the filter clearly increases the computa-
tional load. The reference in all the cases is a mesh of the same
size but without any boundary nodes.

than in the 12 room case. Similarly, the relative cost of DIF bound-
aries with the SRL scheme is larger since the filter update costs are
equal in both schemes but the cost of the actual node update is
smaller in the SRL scheme.

Overall, the relative cost of DIFs is quite large. This means
that they should be used only in the case where they are really
needed if the target is to have real-time auralization. For non-real-
time use, the situation is completely different and there is no reason
to avoid DIFs. However, it seems that if DIFs are to be used, the
filter order can be chosen quite freely. The obtained results raise an
interesting question of the optimal strategy to handle boundaries.
If it is acceptable to have frequency independent impedance in-
side an octave, then there could be a separate mesh for each octave
band and bandpass filters to feed each octave band to correspond-
ing mesh. The reasoning behind this is the fact that the computa-
tional load of a mesh an octave lower is only 1/16th, i.e. 6.25%,
of that of the original mesh. However, the ratio of boundary nodes
increases and discretization errors come larger when the grid spac-
ing increases. Thus it is not obvious which strategy to implement
the boundaries is the best one.

6.4. Future work

This study opens up several possibilities for future research. In our
opinion, the most crucial one is perceptual evaluation of the FDTD
simulation itself. The dispersion error affects severely the qual-
ity of simulations and with this tool it is possible to interactively
search for the limit of dispersion audibility in different geometries.
Another topic that deserves perceptual evaluation lies in the area
of boundary modeling as mentioned in Section 6.3.

7. CONCLUSIONS

The target of this study was to find a way to make real-time wave-
based simulation of room acoustics possible with the help of par-

allel computation capabilities of a modern GPU. That target was
achieved, and the results show that a space of ca. 100m3 can be
simulated in real-time such that the results are within 10% disper-
sion error limit up to 1.5kHz.

Now, for the first time it is possible to have a real physically-
based real-time room acoustic simulation in the frequency range
where modeling the wave phenomena is essential. In addition
to being an auralization tool as such, this work makes further
studying of the perceptual quality of FDTD simulations much eas-
ier. Especially, audibility of the dispersion error and the accuracy
needed in boundary modeling should be investigated more.
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