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ABSTRACT

In this paper we present a novel approach to computing music
similarity based on block-level features. We first introduce three
novel block-level features — the Variance Delta Spectral Pattern
(VDSP), the Correlation Pattern (CP) and the Spectral Contrast
Pattern (SCP). Then we describe how to combine the extracted
features into a single similarity function. A comprehensive eval-
uation based on genre classification experiments shows that the
combined block-level similarity measure (BLS) is comparable, in
terms of quality, to the best current method from the literature. But
BLS has the important advantage of being based on a vector space
representation, which directly facilitates a number of useful op-
erations, such as PCA analysis, k-means clustering, visualization
etc. We also show that there is still potential for further improve of
music similarity measures by combining BLS with another state-
of-the-art algorithm; the combined algorithm then outperforms all
other algorithms in our evaluation. Additionally, we discuss the
problem of album and artist effects in the context of similarity-
based recommendation and show that one can detect the presence
of such effects in a given dataset by analyzing the nearest neighbor
classification results.

1. INTRODUCTION

Although music similarity is naturally an ill-defined concept, as
individuals might judge the perceived similarity of two songs dif-
ferently, it is also a well accepted fact that estimating perceived
similarities between songs can be very useful in many applications
like music recommendation or automatic playlist generation. Fur-
thermore, new innovative interfaces to explore and organize mu-
sic collection can be built based on music similarity information.
There are two fundamentally different approaches to estimating
music similarity. One is to use meta information about music, col-
lected from users, experts, or the Web. The other approach, the
so-called content-based approach, is to analyze the music signals
themselves. There has been a lot of research on content-based mu-
sic similarity estimation and the related task of automatic genre
classification. A good overview of state-of-the-art systems can be
gained by taking a look at the descriptions of the systems sub-
mitted to the Music Information Retrieval Evaluation eXchange

(MIREX)[]_-]2009 Audio Music Similarity and Retrieval task. Most
of the participating algorithms contain components that are based
on the so-called Bag of Features (BOF) representation, which typi-
cally characterizes the timbral content of an audio file by modeling
the distribution of local audio features, e.g., MFCCs. A perfect ex-
ample is the algorithm proposed by Pohle et al. [1], which ranked
first at the MIREX 2009 competition. The corresponding similar-
ity model consists of two distribution models, one describing the
rhythmical and the other describing the timbral nature of a song.

In this paper we present a novel approach to computing content-
based music similarity, where the individual components are based
on a vector space representation. The merit of a vector space rep-
resentation is that a whole toolbox of mathematical methods like,
e.g., Principal Components Analysis, k-Means Clustering or Ran-
dom Projection becomes applicable so that one can easily analyze,
compress, visualize, cluster, or learn from the extracted song mod-
els. The individual components of the proposed similarity measure
are so-called block-level feature. We will start with a short intro-
duction to the block processing framework in section 2] We then
introduce three novel block-level audio features in section [3] and
describe in section [l how to combine the described patterns into
a similarity measure. In section [5] we evaluate the proposed simi-
larity measure via nearest neighbor music genre classification. We
start with a discussion on the evaluation of content-based similar-
ity measures in the context of music recommendation and discuss
the impact of artist and album effects. We then present a compar-
ative evaluation of the proposed algorithm and three other music
similarity measure, including the state-of-the-art measure by Pohle
et al. [[1]. We can show that the proposed algorithm is comparable
in terms of quality to the state of the art, and that a combination of
the block-level similarity measure (BLS) with the measure in [1]
outperforms all other algorithms. Finally, we show that one can
verify the expected artist/album effect on three genre classification
datasets that are used in the evaluation.

Uhttp://www.music-ir.org/mirexwiki
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2. THE BLOCK PROCESSING FRAMEWORK

The idea of processing audio block by block is inspired by the fea-
ture extraction process described in [2} 3| 4]. However, instead
of just computing rhythm patterns or fluctuation patterns from the
audio signal one can generalize this approach and define a generic
framework. Based on this framework one can then compute other
features (e.g., the ones presented in section[3) to describe the con-
tent of an audio signal. One advantage of block-level features over
frame-level features like, e.g., MFCCs is that each block contains
a bunch of frames, which allows the extracted features to better
capture temporal information. The basic block processing frame-
work can be subdivided into two stages: first, the block processing
stage and second, the generalization step.

2.1. Block Processing

For block-based audio features the whole spectrum is processed in
terms of blocks. Each block consists of a fixed number of spectral
frames defined by the block size. Two successive blocks are re-
lated by advancing in time by a given number of frames specified
by the hop size. Depending on the hop size blocks may overlap,
or there can even be unprocessed frames in between the blocks.
Although the hop size could also vary within a single file to reduce
aliasing effects, here we only consider constant hop sizes. Figure
[[]illustrates how to process an audio file block by block.

Block N-1

Block N

Figure 1: Block by block processing of the cent spectrum.

2.2. Generalization

To come up with a global feature vector per song, the feature val-
ues of all blocks must be combined into a single representation for
the whole song. To combine local block-level feature values into
a model of a song, a summarization function is applied to each di-
mension of the feature vectors. Typical summarization functions
are, for example, the mean, median, certain percentiles, or the vari-
ance over a feature dimension. Interestingly, also the classic Bag
of Frames approach (BOF) (see@ can be interpreted as a spe-
cial case within this framework. The block size would in this case
correspond to a single frame only, and a Gaussian Mixture Model
would be used as summarization function. However, we do not
consider distribution models as summarization functions here, as

our goal is to define a song model whose components can be inter-
preted as vectors in a vector space. The generalization process is
illustrated in Fig. [2]for the median as summarization function.

oot Lsed  eeemean

Global Result:

Figure 2: Generalization from block level feature vectors to song
feature vectors using the median as summarization function.

Within this general block processing framework any block-
level feature is defined with respect to the current block being ana-
lyzed. A block can be interpreted as a matrix that has W columns
defined by the block width and H rows defined by the frequency
resolution (the number of frequency bins).

by - buw
block= | : . (1
bii - biw

For the rest of this paper, the description of block-based audio
features, we only outline the block-level feature extraction process
by describing how to compute the feature values on a single block
and by describing the generalization function that is used.

3. BLOCK-LEVEL FEATURES

3.1. Audio Preprocessing

All block-level features presented in this paper are based on the
same spectral representation: the cent-scaled magnitude spectrum.
To obtain this, the input signal is downsampled to 22 kHz and
transformed to the frequency domain by applying a Short Time
Fourier Transform (STFT) using a window size of 2048 samples, a
hop size of 512 samples and a Hanning window. Then we compute
the magnitude spectrum | X (f)| thereof and account for the musi-
cal nature of the audio signals by mapping the magnitude spectrum
with linear frequency resolution onto the logarithmic Cent scale
[5] given by Equation (2). In our implementation this results in a
linear frequency resolution for the lower bands and then starts to
compress the higher frequency bands in a logarithmic way.

feent = 12001og, (fig,/(440 « ( *V2)7°7%)) ()

The compressed magnitude spectrum X (k) is then transformed
according to Eq[3] to obtain a logarithmic scale. Altogether, the
mapping onto the Cent scale is a fast approximation of a constant-
Q transform, but with constant window size for all frequency bins.

X (k)ap = 201log,o(X (k)) 3)

Finally, we perform a normalization step such that the obtained
spectrum is intensity-invariant by removing the mean computed
over a sliding window from each audio frame as described in [6].
All features presented in the next section are based on the normal-
ized cent spectrum.
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3.2. Feature Extraction

In this section we describe the block-level features that will be
used to describe audio content. Three of these features — Spectral
Pattern (SP), Delta Spectral Pattern (DSP) and the Fluctuation
Pattern (FP) — have already been used in our MIREX 2009 sub-
mission [6]. In contrast to [6] we will use a logarithmically scaled
variant of the FP, the Logarithmic Fluctuation Pattern (LFP), in
this paper. The other three features — Variance Delta Spectral
Pattern (VDSP), Correlation Pattern (CP) and Spectral Contrast
Pattern (SCP) — are novel features and are presented here for the
first time. The parameter setting presented here was obtained via
optimization, which is described in more detail in Section[.2]

3.2.1. Spectral Pattern (SP)

To characterize the frequency or timbral content of each song we
take short blocks of the cent spectrum containing 10 frames. A
hop size of 5 frames is used. Then we simply sort each frequency
band of the block.

SOI’t(bHJ bHyw)

SP = : : @)

SOI'[(le cee bl,W)

As summarization function the 0.9 percentile is used.

3.2.2. Delta Spectral Pattern (DSP)

The Delta Spectral Pattern is extracted by computing the differ-
ence between the original cent spectrum and a 3 frames delayed
version of the cent spectrum to emphasize onsets. The resulting
delta spectrum is rectified so that only positive values are kept.
Then we proceed exactly as for the Spectral Pattern and sort each
frequency band of a block. A block size of 25 frames and a hop
size of 5 frames are used, and the 0.9 percentile serves as summa-
rization function. It is important to note that the DSP’s block size
differs from the block size of the SP; both were obtained via opti-
mization. Consequently, the SP and the DSP capture information
over different time spans.

3.2.3. Variance Delta Spectral Pattern (VDSP)

The feature extraction process of the Variance Delta Spectral Pat-
tern is the same as the feature extraction process of the Delta Spec-
tral Pattern (DSP). The only difference is that the Variance is used
as summarization function over the individual feature dimensions.
While the Delta Spectral Pattern (DSP) tries to capture the strength
of onsets, the VDSP should indicate if the strength of the onsets
varies over time or, to be more precise, over the individual blocks.
A hop size of 5 and a block size of 25 frames are used.

3.2.4. Logarithmic Fluctuation Pattern (LFP)

To represent the rhythmic structure of a song we extract the Loga-
rithmic Fluctuation Patterns, a modified version of the Fluctuation
Pattern proposed by Pampalk et al. [2]. A block size of 512 and a
hop size of 128 are used. We take the FFT for each frequency band
of the block to extract the periodicities in each band. We only keep
the amplitude modulations up to 600 bpm. The amplitude modula-
tion coefficients are weighted based on the psychoacoustic model
of the fluctuation strength according to the original approach in

[2]. To represent the extracted rhythm pattern in a more tempo
invariant way, we then follow the idea in [1} [7| [8] and represent
periodicity in log scale instead of linear scale. Finally, we blur
the resulting pattern with a Gaussian filter, but for the frequency
dimension only. The summarization function is the 0.6 percentile.

3.2.5. Correlation Pattern (CP)

To extract the Correlation Pattern the frequency resolution is first
reduced to 52 bands. This reduction of the frequency resolution
was found to be useful by optimization and also reduces the dimen-
sionality of the resulting pattern. Then we compute the pairwise
linear correlation coefficient (Pearson Correlation) between each
pair of frequency bands. The result of this operation is a sym-
metric correlation matrix. The Correlation Pattern can capture, for
example, harmonic relations of frequency bands in the case that
sustained musical tones are present. Also rhythmic relations can
be reflected by the correlation pattern. For example, if a bass drum
is always hit simultaneously with a high-hat this would result in a
strong positive correlation between low and high frequency bands.
Conversely, if the high-hat and the bass drum are never played
together this would contribute to a negative correlation. The CP
shows interesting patterns when they are visualized for different
types of songs. For example the presence of a singing voice leads
to very specific correlation patterns. A block size of 256 frames
and a hop size of 128 frames is used. The summarization function
for this feature is the 0.5 percentile.

3.2.6. Spectral Contrast Pattern (SCP)

The Spectral Contrast [9] is a feature that roughly estimates the
“tone-ness” of a spectral frame. This is realized by computing the
difference between spectral peaks and valleys in several sub-bands.
As the strong spectral peaks roughly correspond to tonal compo-
nents and flat spectral excerpts roughly correspond to noise.like
or percussive elements, the difference between peaks and valleys
characterizes the toneness in each sub-band. In our implementa-
tion the Spectral Contrast is computed based on the cent scaled
spectrum subdivided into 20 frequency bands. For each frame we
compute in each band the difference between the maximum value
and the minimum value. This results in 20 Spectral Contrast values
per frame. Then the Spectral Contrast values of a block are sorted
within each frequency band, as already described for the Spectral
Pattern. A block size of 40 frames and a hop size of 20 frames are
used. The summarization function is the 0.1 percentile. Figure
visualizes the proposed set of features for two different songs, a
Hip-Hop and a Jazz song.

3.3. Merits of the vector space model

To further emphasize that a vector space representation has indeed
some important merits in contrast to distribution models, we have
computed a Principal Component Analysis (PCA) for the Spec-
tral Pattern (SP) based on the “1517-Artists” dataset (see [5.2.5).
The first 13 principal components are visualized in Figure[d] The
components seem to capture different musical concepts like bass
elements, drum elements or different tones. Furthermore, the first
110 components capture 99.01% of the total variance. This indi-
cates that there is a lot of redundant information in the Spectral
Patterns and that the SP can be radically compressed without any
substantial loss in quality. Although this is just one example of the
benefits of a vector space representation and further analysis of
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Figure 3: Visualization of the proposed block-level patterns for a
Hip-Hop song (upper) and a Jazz song (lower).

the features is left for future work, we believe that a vector space
representation can be quite beneficial especially because of all the
rich mathematical methods available for vector spaces.

24680 24GH0 24680 24GH0 24680 24680 2460 24680 24680 246A0 24BH0 24880 24680

Figure 4: Visualization of the 13 most important principal compo-
nents of the Spectral Pattern.

4. FUSING DISTANCES FOR MUSIC SIMILARITY
ESTIMATION

To define a single similarity function based on the six block-level
patterns presented above, we first define a similarity function for
the individual patterns alone. In our case we get good genre classi-
fication results for all individual patterns when they are compared
using the Manhattan distance (I, norm) as a similarity function.
In a next step the distances resulting from the individual compo-
nents have to be combined into a single similarity measure. One
main problem is that the similarity estimates based on the individ-
ual patterns have different scales. To account for this, we follow

Sy S S5 Sm - Swa Sw
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S
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Figure 5: Distance Space Normalization of a distance matrix.

the approach in [10] and perform a distance space normalization
(DSN). However, we will use a modified variant that allows for
a more intuitive interpretation. Each distance of a distance ma-
trix Dy, is normalized by subtracting the mean and dividing by
the standard deviation (Gaussian normalization) over all distances
in row n and column m (see figure [B). Thus, each distance be-
tween two songs n and m has its own normalization parameters,
as all distances to song m and all distances to song n are used
for normalization. This way the normalization operation can also
change the ordering within a column / row, which can even have a
positive influences on the nearest neighbor classification accuracy
according to [T]]. This observation is confirmed by the classifica-
tion results of the individual components of our approach before
and after distance space normalization summarized in Table[T]

After the distances resulting from the individual components
have been normalized they are summed to yield an overall similar-
ity measure. The results in Table |I| also shows that this combina-
tion clearly outperforms the individual components. Additionally,
it turns out that removing any of the proposed components would
reduce the classification accuracy of the combined similarity mea-
sure. Thus, we can conclude that all the components contribute
to the overall similarity. It is also worth mentioning that we have
evaluated several other normalization approaches to combine the
individual components, but none outperformed the DSN approach
described here.

4.1. Extended Distance Space Normalization (EDSN)

It is straightforward to extend this additive combination approach
by assigning individual weights to each component. Additionally,
based on the observation that the DSN approach all alone can help
to improve nearest neighbor classification accuracy, we extend the
combination approach and once more normalize the resulting dis-
tance matrix after the individually weighted components have been
combined. This results in an improvement of the classification ac-
curacy from 36.49% to 37.69% (see Table m) The overall combi-
nation method we propose is visualized in Figure [§] In the next
subsection we will discuss how to obtain the component weights
and the parameter settings for the presented features via optimiza-
tion.
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Figure 6: Schematic structure of the combination approach.

4.2. Optimization of the Similarity Measure

The features presented in section [3.2]come with a large set of pa-
rameters. For example, one can compute these features for dif-
ferent block sizes, hop sizes, different percentiles and other pa-
rameters. To identify suitable parameter settings for the individual
components and find an optimal weighting of the components we
optimize these settings on dataset “1517-Artists” (see[5.2.5).

Each block-level feature was optimized separately. Unfortu-
nately, a complete evaluation of all reasonable parameter combina-
tions was impossible, as each parameter setting requires to recom-
pute the feature on the whole collection, which was not tractable
computationally. Therefore, the optimization procedure was to
vary each parameter separately one after the other and pick the
optimum. The “optimal” parameter settings found by this still ex-
pensive optimization are reported in Section[3.2}

The weights of the individual components are found by a greedy
optimization. All the components get an equal weight at the begin-
ning (w; = 1). Then the weight of a randomly chosen component
is reduced, if this results in an improvement in classification accu-
racy. This step is repeated until no more improvement is possible.
The final weights that result from this optimization are summa-
rized in Table[Il

[ Component | Weight | 10-NN | 10-NN (DSN) |

LFP 10 | 26.70% 28.75%
SP 10 | 26.76% 26.82%
SCP 10 | 1931% 20.47%
Cp 10 | 23.36% 26.83%
VDSP 08 | 21.44% 24.18%
DSP 09 | 23.18% 25.28%

[ Combined | [3649% | 37.69% |

Table 1: Component weights of the optimized similarity measure
and the respective nearest neighbor classification accuracies on
dataset “1517-Artists” of the components before and after dis-
tance space normalization (DSN).

5. EVALUATION

To evaluate the proposed block-level similarity measure (BLS)
we follow the standard procedure in MIR research and evaluate
the measure in an indirect way via nearest neighbor music genre
classification. In our evaluation we especially take into account
the intended target application of the proposed similarity measure,
which is automatic music recommendation. Thus, we start with a
discussion on the evaluation of content-based similarity measures
in the context of music recommendation in subsection[3.1} Then,
in[5.2] we introduce the six genre classification datasets that are
used in the evaluations and briefly describe, in the three simi-
larity measures that the BLS approach is compared to. Finally, the
results of the evaluation are presented and analyzed in subsection

54

5.1. Evaluation in the context of Music Recommendation

The most widespread application of a content-based similarity mea-
sure is that one can easily build a music recommendation engine
simply by recommending the songs that sound most similar to a
given query song according to the similarity measure. However,
not all songs that “sound similar” are also good recommendations.
It is for example quite obvious that users would be annoyed if just
songs by the same artist as the query song or by just one other
artist appear in the recommendations. Unfortunately, this is of-
ten the case if the recommendations are generated with a content-
based similarity measure: songs by one artist are of course often
very similar to each other, because of the very specific style and
the specific recording conditions. From an acoustic point of view
the characteristic style of an artist is related to the instrumentation,
the singing voice and the type of music being played, which are
all in some way reflected in a good similarity measure. Thus, it is
relatively easy to identify songs by one and the same artist using
audio similarity algorithms. This effect is known as artist effect.
In some cases even album-specific production effects are reflected
in the spectral representation of songs, which is respectively called
album effect. Artist and album effects are not a problem per se, but
they do become one in the context of music recommendation, and
also when we use — as is generally done in MIR research — genre
classification as an indirect method for evaluating the quality of
music similarity measures: clearly, songs by the same artist will
tend to belong to the same genre, and the ability to recognize the
genre by, e.g., specific production effects, is not what we intend to
measure.

For an informative evaluation, that implies that trivial simi-
larity recognition should be prevented by using a so-called artist
filter that ensures that all songs by one artist are either in the train-
ing set, or in the test set. But although album and artist effects have
been studied intensively in the literature [11]], often evaluation re-
sults without artist filtering are reported. One reason might be that
there are almost no publicly available datasets that contain songs
by a sufficiently large number of different artists. The only two
datasets that we are aware of that might be useful for evaluations
in this context are the “Homburg” [12] and the “1517-Artists”
dataset. Unfortunately, the song excerpts in the former are only 10
seconds long, and the latter has been used to optimize the proposed
block-level similarity measure. For this reason we have compiled
another additional dataset, called “Unique”. For better compara-
bility we will also present nearest neighbor classification results
on three well-known and publicly available datasets, where we ex-
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pect a significant artist effect — which will also be experimentally
verified.

5.2. Datasets

Six different genre classification datasets are used for the evalua-
tion. Three of these (“GTZAN”, “ISMIR 2004 Genre” and “Ball-
room”) are well-known datasets and should help to make the eval-
uation results comparable to previous results in the literature. How-
ever, we suspect that there is a significant artist effect in these three
datasets. For the other three datasets (“Homburg”, “1517-Artists”
and “Unique”), artist information is available and we use an artist
filter to prevent any artist or album effects.

5.2.1. GTZAN

The GTZAN dataset contains 1000 song excerpts (30 seconds)
evenly distributed over 10 genres. Unfortunately, there is no artist
information available and the number of different artists is un-
known. However, we expect an artist effect in this dataset, as
listening to some of the songs reveals that some artists are rep-
resented with several songs.

5.2.2. ISMIR 2004 Genre

The ISMIR 2004 Genre dataset was used as ground truth in the
first public evaluation of content-based algorithms. There are two
different versions of the dataset. In our evaluation we will use the
larger dataset consisting of 1458 full length tracks distributed over
6 genres. The class distribution is unequal. The dominating class
“classical”, comprising 43.9% of all songs. Artist information is
only partially available, but the number of different artists is rather
low and consequently a strong artist effect is to be expected.

5.2.3. Ballroom

The ballroom collection consists of 698 song excerpts (30 sec-
onds) of 8 different dance music styles (Cha-cha, Jive, Quickstep,
Rumba, Samba, Tango, Viennese Waltz and Waltz). The genre
distribution is quite uniform. The category with the fewest ex-
amples is represented by 8.6%, the largest category by 15.9% of
all examples. Artist information is missing, but for a part of the
songs album information is available. We expect that there exists
an album or artist effect on this dataset, since there are often many
examples that belong to one album.

5.2.4. Homburg

The “Homburg” dataset [12] contains 1886 songs by 1463 dif-
ferent artists. Consequently, the artist effect should be relatively
small, but still we will use an artist filter on this dataset since artist
information is available. The rather short song excerpts of 10 sec-
onds length are unequally distributed over 9 genres. The largest
class contains 26.72%, the smallest class 2.49% of all songs.

5.2.5. 1517-Artists

This genre classification dataset consists of freely available songs
from download.coni’| and has been previously used in [13] and
[14]. To ensure reasonable track quality approximately the 190

Zhttp://music.download.com/

most popular songs (according to the number of total listenings)
were selected for each genre. Altogether there are 3180 tracks by
1517 different artists distributed over 19 genres. It is worth men-
tioning that this collection has an almost uniform genre distribu-
tion, contains tracks from a large number of different artists, and
can be freely downloaded from the author’s personal homepag
This dataset was used to optimize the parameters of the BLS ap-
proach; thus, the classification results reported below are likely to
be too optimistic.

5.2.6. Unique

Dataset “Unique” contains 30 seconds song excerpts from 3115
popular and well-known songs distributed over 14 genres. The
dataset is compiled in such a way that no two songs by one and
the same artist are in the dataset. Consequently, there is no need to
apply an artist filter. The class distribution is skewed. The smallest
class accounts for 0.83%, the largest class for 24.59% of all songs.

5.3. Music Similarity Algorithms

In our evaluation we compare six different approaches: the pro-
posed block-level similarity measure (BLS), the by now ‘classic’
Single Gaussian Approach (SG), two state-of-the-art methods (RT-
BOF, MARSYAS), and a combination (CMB) of RTBOF and BLS.
Additionally, a random similarity measure (RND) is used to indi-
cate the baseline accuracy for the various datasets. The SG, RT-
BOF, MARSYAS and CMB measures are briefly described in the
following.

5.3.1. Single Gaussian (SG)

The Single Gaussian (SG) model is based on the so-called Bag of
Frames (BOF) approach [15]]. Each song is modeled as a distribu-
tion — in the form of a single multi-variate Gaussian — of Mel Fre-
quency Cepstrum Coefficients (MFCCs) over the entire song. The
similarity between two such models is computed via the Kullback-
Leibler (KL) divergence. This approach is a fast and popular vari-
ant proposed by Levy et al. [16] of the classic timbre-based audio
similarity measure.

5.3.2. Rhythm Timbre Bag of Features (RTBOF)

The Rhythm-Timbre Bag of Features approach (RTBOF-NN) is a
recent music similarity measure proposed by Pohle et al. in [1].
This measure ranked first in the MIREX 2009 music similarity
and retrieval task and has proven to be statistically significantly
better than most of the participating algorithms. Thus, it reflects
the current state of the art in music similarity estimation and near-
est neighbor classification. Basically, it has two components — a
rhythm and a timbre component. Each component consists of a
distribution model over local spectral features. The features, de-
scribed in [1], are complex and incorporate local temporal infor-
mation over several frames. Because of its components we will
call this approach Rhythm-Timbre Bag Of Features (RTBOF) in
the following.

3www.seyerlehner.info
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5.3.3. Marsyas (MARSYAS)

The MARSYAS (Music Analysis, Retrieval and Synthesis for Au-
dio Signals) framewor]ﬂ is an open source software that can be
used to efficiently calculate various audio features. For a detailed
description of the extracted features we refer to [17]. This algo-
rithm has participated in the MIREX Audio Similarity and Re-
trieval task in 2007 and 2009 (there was no such task in 2008),
taking the 2nd and 7th rank, respectively. The features as well as
the similarity computation were the same in 2007 and 2009. We
use the framework to extract the features and compute the distance
matrix exactly as for the MIREX contest.

5.3.4. Combination (CMB)

To find out if there is any potential for further improvement, we
also evaluate a combination of the RTBOF and the BLS approach.
The similarity measures are combined using the extended distance
space normalization presented in Section with equal weights
for both algorithms.

5.4. Evaluation Results

Genre classification experiments were performed in the form of
stratified 10-fold cross-validation runs, using a k Neareast Neigh-
bor (k-NN) classifier based on the respective similarity measure,
with k varying from 1 to 20. The results are summarized in Fig-
ure [/} First of all, all similarity algorithms clearly outperform the
random baseline. Note that the random baseline stays constant for
datasets “1517-Artists” and “GTZAN”, while it increases on the
other datasets. This increase is related to the imbalanced class dis-
tributions of the respective datasets. With increasing &, the random
baseline grows towards the accuracy obtainable by always predict-
ing the most frequent genre.

Furthermore, comparing the accuracies obtained on the datasets
in the upper row of Figure[J]to the accuracies on the datasets in the
lower row, one can see that the classification accuracies are ba-
sically increasing in the upper plots and decreasing in the lower
plots. In the upper datasets there is no artist or album effect (due
to the nature of the music collections), whereas for the datasets in
the lower plots we expect an artist effect. This phenomenon can
be explained by the fact that for datasets with an artist effect the
first nearest neighbor of a given query song will likely be a song
by the same artist. As typically songs by the same artist belong to
the same genre the first nearest neighbor is an almost perfect genre
predictor. For the datasets without artist effect, we can clearly ob-
serve the expected learning curve, where the k-NN classifier prof-
its from considering an increasing neighborhood. Thus, from an
analysis of the nearest neighbor classification results one can even
detect the presence of a strong artist or album effect.

Considering the individual results of the algorithms it turns
out that both the RTBOF and the BLS outperform the SG and
MARSYAS measures. For the artist-filtered collections (“1577-
Artists”, “Homburg”, “Unique”) the BLS measure exceeds the
classification accuracy of the RTBOF approach (by 2.31, 1.04 and
0.72 percentage points). On the not-artist-filtered collections (that
are “GTZAN”, “Ballroom”,“ISMIR 2004 Genre”), RTBOF per-
forms better than BLS (by 2.56, 7.6 and 0.59 percentage points).
One might speculate that the RTBOF approach is more success-
ful in artist identification, whereas the BLS is more suitable in the

“http://marsyas.info

recommendation context. The only significant difference in clas-
sification accuracy on the “Ballroom” dataset seems to be also
related to the improved variant of the “Fluctuation Pattern” (the
“Onset Pattern” (OP)) that are used in RTBOF algorithms. Thus,
it might be worth replacing the LFP in our BLS algorithm with the
OP, as the OP would also fit into the block-level feature extraction
framework and has a vector space representation. Altogether, the
differences in classification accuracy between RTBOF and BLS
are marginal, and we conclude that both approaches perform com-
parably in terms of quality.

However, the evaluated combination approach (CMB) is clearly
an improvement over both the RTBOF and BLS methods. It out-
performs all other algorithms on datasets “1517-Artists”, “Hom-
burg”, “Unique” and “GTZAN”, and achieves an accuracy com-
parable to the best single algorithm on datasets “Ballroom” and
“ISMIR 2004 Genre”. This indicates that there is further poten-
tial for improvements of the block-level similarity approach, e.g.,
by replacing the LFP with the OP, but also for content-based sim-
ilarity algorithms in general. Furthermore, this also indicates that
both RTBOF and BLS capture some complementary similarity in-
formation. Thus, a more detailed analysis of the individual com-
ponents of both methods seems called for, to identify an optimal
combination.

6. CONCLUSIONS & FUTURE WORK

In this paper we have presented three novel block-level audio fea-
tures, namely the Variance Delta Spectral Pattern (VDSP), the
Correlation Pattern (CP) and the Spectral Contrast Pattern (SCP).
We have defined a music similarity measure based on these and
three other block-level features and have shown that it is compa-
rable to the state of the art in music similarity. The advantage of
the proposed measure is that its components are based on a simple
vector representation. This allows to, e.g., easily analyze, com-
press or cluster the components via standard mathematical proce-
dures. Another advantage is that one can visualize a song’s model,
and the proposed feature set can be used in a straight-forward way
with more powerful classification methods such as, e.g., Support
Vector Machine, for other classification tasks too. Thus, one fu-
ture direction will be to use the proposed feature set in automatic
tag prediction. Last, but not least, the evaluated combination ap-
proach indicates that combining the work in [1]], especially the
“Onset Pattern”, with some of the proposed block-level patterns
could further improve the similarity measure. This has to be in-
vestigated in more detail to see which combination of components
is most suitable. With respect to the evaluation of music similarity
measures we have shown that there exists an artist effect on three
well-known datasets and we have presented another novel dataset
that is more suitable for evaluations in this context.
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