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ABSTRACT

Music Structure Discovery (MSD) for popular music is a well
known task in Music Information Retrieval (MIR). The proposed
approach tries to find the basic musical structure of a piece of mu-
sic, by applying a template matching algorithm on a modified, bar
level Self Distance Matrix (SDM). Mel frequency cepstral coeffi-
cients (MFCC) are used to represent timbral qualities of the audio
material while chroma vectors are selected to incorporate pitch and
harmonic content. The new idea of template matching instead of
trying to find explicit blocks or off-diagonal lines is independent of
any specific characteristics of the underlying SDM and can there-
fore be used on a wide range of different songs.

1. INTRODUCTION

If we listen to music, we are literally surrounded by repetitive
structures and varying patterns. We will hear different combina-
tions of melodic and harmonic progressions, ongoing rhythmic
movements and on a wider time scale changes in timbre and the
dynamics of the song. Despite this variety of patterns, most MSD
algorithms aim to detect a specific high-level musical structure of-
ten referred to, in music theory, as the musical form.

The musical form can be seen as the decomposition of a song
into its major building blocks. Every building block has its own
label and can occur at various times throughout the song. Typical
labels in popular music are for example intro, verse, chorus, bridge
and outro. Although the exact determination of the musical form
is not always unambiguous, most people will unconsciously split
songs into closely related blocks when listening to music. There-
fore, detecting the musical form is a reasonable and natural objec-
tive for MSD [1].

Knowing the structure of a piece of music is useful in various
fields. For examples, it can help to support other MIR applica-
tions like the detection of different versions of the same song [2]
or audio thumbnailing [3], [4], [5]. Alternatively, the results can
be used to improve the usability of a wide range of existing au-
dio applications, such as allowing more intuitive navigation within
pieces when using audio players or Digital Audio Workstations
(DAW) [6], [7].

Since the creativity of composers is the only limit for the vari-
ety of differences and similarities among song segments, several
approaches to solve the problem of musical structure detection
have been developed. Typically, a set of appropriate features is ini-
tially derived from a short time spectral representation of the audio
file. Most of these features have been found to be adequate descrip-
tors for either one or several different aspects of human cognition

of music. Therefore, the most commonly used features in MSD
are often based on timbre [8], [9], pitch and harmony [4], rhythm
or a set of multiple descriptors [1], [10], [11], [12].

Once the feature sequences are extracted, the search for repeti-
tive parts and related sections can mainly be focused on two differ-
ent temporal qualities: sequences and states [10]. Sequence-based
approaches try to find clear repetitions of consecutive feature se-
quences [4], [10], [13], whereas state-based approaches handle
the feature sequence as a succession of different states and try
to find relations by applying clustering algorithms [14] or hid-
den Markov models (HMM) [8], [15]. These two basic types of
repetitions become apparent, when a Self Distance Matrix (SDM)
is used to visualize the temporal structure of a song. Given a
feature vector sequence V [n] consisting of single feature vectors
~vi, i = 1, 2, . . . , N, the SDM S(i, j) represents the distance be-
tween each pair of feature vectors over time. Therefore, an off-
diagonal line inside S(i, j) corresponds to the repetition of a cer-
tain sequence of consecutive feature vectors, whereas a rectangular
block represents a group of overall similar feature vectors, poten-
tially belonging to the same state. 1

In this paper we use the well known mel frequency cepstral co-
efficients (MFCC) to represent timbral qualities of the audio ma-
terial and the chroma or pitch class profile (PCP) as an abstract
descriptor for pitch and harmonic progression. The search for rep-
etitions is then based on a combined, modified SDM using Nor-
malized Cross Correlation (NCC). The main contribution of this
paper is to search for similarities between vertical slices within a
similarity matrix, instead of trying to find explicit blocks or off-
diagonal line segments. This makes the detection of repetitions
widely independent of any distinct structures in underlying SDM,
as will be explained in more detail in Section 2.2.

The remainder of this paper is organized as follows: Section 2
gives an overview of the implemented system, starting with the ba-
sic feature extraction (2.1) before focusing on the structural anal-
ysis based on the new idea of template matching using NCC (2.2).
In Section 2.3, we outline the segment detection algorithm lead-
ing to the final song structure. Section 3 provides an evaluation of
the system on a small testing corpus and gives a short analysis of
the overall performance while Section 4 offers a brief outlook of
possible future work.

1A good example for this kind of structures can be found in Figure 1b
(right). Part A (verse) shows a quite distinct line structure, whereas part B
(bridge) reveals a strong block like structure.
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2. PROPOSED METHOD

2.1. Feature Extraction

As our selected features both rely on a short time spectral represen-
tation of the input signal, a Hanning windowed Short Time Fourier
Transform (STFT) of length NSTFT = 4096 is computed. To
assure a constant temporal resolution of about 45ms for each pro-
cessed frame, all songs are resampled to fs = 11025Hz and the
hop-size between adjacent frames is set to kSTFT = 512.

Chroma has been demonstrated to be a successful basic in-
dicator of the harmonic and melodic progressions of music as it
measures the spectral energy related to the 12 semitones of the
well-tempered scale. We use a constant-Q filterbank [16], in which
every single frequency band kcq represents one semitone and we
receive the chroma vector ~c by summing the energy over all the
bins belonging to one tone ~c(kcq) = mod(kcq, 12). To avoid mis-
interpretation of songs not played according to the standard tuning
frequency, we perform a tuning of the filterbank by detecting the
center of spectral energy within ±1 quarter-tone around 440Hz.

In addition to the chroma, the MFCCs of every frame are cal-
culated using a 42 band Mel-filterbank. MFCCs have been utilized
in audio and speech applications for many years as they are a pow-
erful method for describing timbral properties, incorporating the
non-linear frequency and energy reception of the human auditory
system. For our method, we chose 10 coefficients, including the
zeroth coefficient.

After feature calculation, all features are averaged over the pe-
riod of one beat. Beat-averaging offers a tempo-invariant time base
for further computations as well as a more stable representation of
the extracted features. To avoid blurring of beat averaged results
by transient events, we define an offset of about 45ms at the begin-
ning and end of every beat. For beat detection we use the method
proposed by Ellis [17] that has been shown to perform well and in
a stable manner.

2.2. Structural Analysis

2.2.1. Embedding and mapping

SDMs have been widely used for musical structure detection [4],
[13]. In [18] it has been proposed to use measure level similarity
matrices instead of frame or beat based matrices for MSD, as bars
are the smallest natural building blocks of a higher-scale musical
structure. In our approach we follow a very similar idea inspired by
the concept of the embedding dimension known from recurrence
plots (RP) [19].

RPs have been developed as a tool for nonlinear data anal-
ysis helping to visualize and understand the recurrent behavior
of dynamical systems. In RP analysis, the embedding dimen-
sion ρ defines how many time instances of a feature sequence are
combined to calculate the RP. Therefore, S(i, j) is constructed by
computing distances between all pairs of embedded vectors ~ei =
(~vTi , ~v

T
i+1, . . . , ~v

T
i+(ρ−1)) and ~ej = (~vTj , ~v

T
j+1, . . . , ~v

T
j+(ρ−1)).

The simplified idea behind the embedding dimension of recurrence
plots states that each single observed parameter of a dynamic sys-
tem (e.g. air pressure) contains important information about the
dynamics of the whole system (e.g. weather). By defining an "ad-
equate" embedding dimension, the behavior of the overall system
can be reconstructed by only using one embedded parameter. Al-
though music is not a natural dynamic system, it reveals a clear de-
pendency on multiples of beats and bars. When comparing Figure

1a and Figure 1b, one can see that setting the embedding dimen-
sion to values ρ > 1 clearly enhances the clarity of off-diagonal
lines in the SDM.

(a) beat level SDMs (no embedding)

(b) bar level SDMs (embedding dimension ρ = 4)

Figure 1: SDMs with different embedding dimensions before (left)
and after (right) mapping operation [Beatles - All’I’ve Got To Do]

Based on the aim to find bar level relations, we use an embed-
ding dimension of ρ = 4 corresponding to the four beats forming
one bar, when analyzing songs written in common time (4/4 bar).
Euclidean Distance is then used for computing two bar level dis-
tance matrices.

The two resulting SDMs are finally normalized to [0, 1] and
combined into one matrix Scmb(i, j) by pointwise multiplication.
To further reduce noisy information before applying the template
matching algorithm, the values of the combined bar level SDM
are mapped by a continuous function (1), enforcing areas of high
similarity while suppressing areas of low similarity (see Figure 2).

Smap(i, j) = 0.5− 0.5 ∗ tanh[π ∗ λ ∗ (Scmb(i, j)− γ)] (1)

Figure 2: Mapping function with γ = 0.25 and γ = 0.5. (In our
case, γ is always smaller than 0.4 due to the used thresholding
method.)

To find an adequate threshold γ for the mapping operation, we
apply Otsu’s method on Scmb(i, j), neglecting values larger than
0.4. Otsu’s method is a widely used algorithm for histogram based
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image thresholding which tries to minimize the intraclass variance
of two classes of variables. For more detailed information, please
refer to [20]. The additional constraint to use values smaller than
0.4 focuses the thresholding operation on the relevant parts of the
matrix, helping to keep important structures while adequately sup-
pressing noisy areas. Examples for mapped SDMs can be found
in Figure 1 (right). Depending on the resulting threshold γ, the
parameter λ is set automatically to map 0 to 1. Although the re-
sulting matrix looks similar to a binary recurrence plot, the con-
tinuous mapping preserves the fine structure of highly repetitive
areas, which is important for template matching.

As mentioned in Section 1, different MDS systems often fo-
cus on different aspects of repetitions, namely states (rectangu-
lar blocks showing areas of high similarity) or sequences (off-
diagonal lines). Approaches only relying on specific characteris-
tics of the SDM sometimes fail, as songs do not always show clear
off-diagonal lines or distinct blocks of high similarity. Therefore,
we propose to use a template matching algorithm based on Nor-
malized Cross Correlation to find repetitive parts. Exploiting the
inherent symmetry of SDMs, it directly compares different simi-
larity profiles (SP) (vertical SDM slices) and is therefore indepen-
dent of any specific structure.

2.2.2. Template Matching

Normalized Cross Correlation is a standard method for image reg-
istration (template matching) in various fields of digital image pro-
cessing [21]. Using NCC for finding a template image T within a
search image I results in a cross correlation matrix C(i, j), show-
ing maxima at positions of high correlation. This can be computa-
tionally expensive, as the NCC has to be computed at all possible
positions of the template with respect to the search image.

C(i, j) = . . .∑
x,y[I(x, y)− Ii,j ][T (x− i, y − j)− T ]

{
∑
x,y[I(x, y)− Ii,j ]2

∑
x,y[T (x− i, y − j)− T ]2}0.5

(2)

Equation 2 shows the general form of the NCC. The sums run
over x, y in the region under the template positioned at i, j, I is
the mean of the search image in the same region and T is the mean
of the template. Fortunately, the number of necessary computa-
tions is drastically reduced when we are trying to find repetitions
in the SDM. The template T is always simply a vertical or hori-
zontal slice of the search image I (due to the inherent symmetry
of the SDM, vertical or horizontal slices represent the same 90◦

shifted similarity profile) and the template only has to be shifted
into one direction. In our approach, we use vertical slices and eval-
uate all horizontal shifts of the templates across the search image.
Therefore, i is always 1.

To further reduce computational cost, the means T and I for
all possible template positions can easily be calculated in advance.
As two bars are basically the smallest sequential building block of
a song, we chose a template width ofw = 8. The hop size between
adjacent templates is set to 1.

Considering an SDM of dimension NxN and columns
~s1,2,...,N , the initial template T1 = [~s1, ~s2, . . . , ~sw] is evaluated
over the related search image I1 = [~sw+1, ~sw+2, . . . , ~sN ] (see
Figure 3). Since the resulting cross correlation vectors ~c1,2,...,N
become shorter with each hop, all vectors are zero padded to length
N and stored into a matching matrix M(i, j). The relevant part of
M(i, j) is presented as the upper triangular matrix in Figure 4.

Figure 3: As indicated with light gray areas, maxima in the cross
correlation vector ~c1 mark possible repetitions of the initial tem-
plate T1 in the related search image I1.[Radiohead - Creep]

To find all valid repetitions, the correlation maxima in the
columns ~m1,2,...,N ofM(i, j) have to be detected in a first step. To
decide whether a peak in ~mj represents a valid detection or not, an
individual threshold for each bar of the song is computed. Similar
as for the mapping threshold γ, we use Otsu’s method on each row
of M(i, j), neglecting all values smaller than 0.5, to find a good
threshold for valid peaks. In Figure 4 (right) it can be seen that the
resulting vector ~t(j) shows high thresholds on time instances with
high overall correlation values while offering moderate thresholds
in other areas.

After finding a list of repetitions for each template using ~t(j),
the results are marked as valid detections within binarized vec-
tors. The vectors are then stored into a matrixMbin(i, j), showing
repetitive sequences as continuous, diagonal lines (see Figure 4,
lower triangular matrix). Since Mbin(i, j) is based on template
matching, it will even show off-line diagonal lines if the underly-
ing SDM did not expose such a structure.

2.2.3. Audio novelty function

Template matching will consider groups of consecutive segments,
always occurring in the exact same context throughout the song, as
one large segment. Therefore, we use the audio novelty function
~η(j) [9] with slight modifications as simple additional indicator for
potential segment borders. Typically ~η(j) results from correlating
a checkerboard-like kernel matrix K along the main diagonal of
a full SDM. Segment borders are then found by detecting peaks
inside ~η(j).

We basically followed this standard approach with two mi-
nor changes. First, we correlate the kernel K with the mapped
matrix Smap(i, j) instead of using the full SDM Scmb(i, j), to
obtain clearer peaks in ~η(j). Second, we set the main diagonal
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Figure 4: The upper triangular matrix shows the full matching ma-
trix M(i, j), while the lower triangular matrix represents the bi-
narized matching matrixMbin(i, j). The threshold vector~t (right)
is needed to perform this binarization. [Radiohead - Creep]

and respectively the first four off-line diagonals (corresponding to
one bar) of K to zero, to avoid high correlation values for areas
showing only very strong bar level dependencies, but no real long-
term similarities. The final border candidates are then selected by
a strict peak picking algorithm and stored into a vector ~s. The
peak detection algorithm is based on an adaptive sliding-median
threshold and a very high lower-bound, related to the largest pos-
sible correlation value regarding the kernelK, to avoid adding any
wrong detection in this step.

The following relatively straight forward segment detection
steps could be used on any other kind of binarized similarity matrix
and has mainly been designed to show that the concept of template
matching could be an interesting alternative to pure line-detection
methods.

2.3. Segment Detection

To simplify the detection of meaningful segments, Mbin(i, j) is
cleaned up by removing discontinuities within longer segments
and deleting very short line segments (both thresholds are set to
5s). Further, a linked list connecting all repetitions belonging to
every single bar is created to exploit the dependencies of repeti-
tions targeting the same time interval.

To illustrate the idea, let ~ra, ~rb and ~rc be lists of repetitions
belonging to bars ba, bb and bc, where ba is repeated at bb which
again is repeated at bc. Since all repetitions found for bb and bc
are implicitly related to ba, a linked list ~ra → ~rb → ~rc revealing
these higher-order relations is constructed to find all repetitions of
ba, even those not included in the original list ~ra. This linked list
therefore creates a repetition profile of the whole song.

After incorporating this new information into Mbin(i, j), an
initial set of U repetitions Φall = {~ϕu|u = 1, 2, . . . , U} can be
extracted. Each repetition ~ϕu is characterized by the starting in-
dex of the related song segment, the corresponding time lag and
its length. Φall is then extended by the border candidates ~s found
by the audio novelty function. They are added with a time lag of
zero, as they already represent non shifted starting indices. Fur-

ther, stand-alone segments which are neither repeated nor the tar-
get of a repetition are extracted from the repetition profile and are
likewise added to Φall with a time lag of zero.

In a next step, repetitions related to song segments starting
within a time frame of ±4s are grouped into Gall subsets
Φall 1,2,...,Gall . After this grouping operation, the time lags be-
longing to each repetition of a subset Φall j are added to their
corresponding starting indices and stored into a vector ~vj . This
vector shows all actual occurrences of the song segment related to
Φall j . As some subsets will only represent different repetitions
of the same song segment, the entries of all vectors ~v1,2,...,Gall are
compared and subsets belonging to vectors with a significant num-
ber of overlaps (allowing a deviation of ±2s) are merged. Based
on these final subsets Φfin 1,2,...,Gfin , a two-columned list Lstart
containing the occurrences of each song segment and their corre-
sponding subset IDs is constructed.

It has to be mentioned that we only focus on the starting posi-
tions of each segment and, for the moment, ignore any information
about their estimated durations. We directly transform the list of
starts Lstart into a list of segments Lseg , where each segment is
defined by a corresponding ID and runs from its starting index to
the closest starting index in Lstart. Too avoid segments which are
too short, occurring if two starting indices in Lstart are very close
together and have different IDs, we remove all segments < 8s. As
we always want to keep the starting index related to the song seg-
ment that occurred earlier, the starting index with the higher ID is
ignored.

If each segment of the investigated song is defined by a start in
Lstart, the resulting segmentation will already represent the final
structure of the song. The ignored information of segment dura-
tions is only critical, if two or more segments are repeated as iden-
tical groups. For example, when trying to detect the song structure
A − A − B − A − B − C, the starts of segment B will not be
detected, as B is a subsegment of the sequenceA−B. Since such
"double" segments tend to be unusually long, we define a temporal
threshold of 30s and check all longer segments for an eventually
missed segment transition.

As truncating segments which are potentially too long can not
be based on existing starting indices, we use the so far neglected in-
formation of segment lengths (or stops) to find alternative segment
borders. We check all segment lengths of the related segments in
Φfin j and compute the resulting potential stops. If any of these
lengths approximately matches the length of another segment with
the same ID, the segment is truncated to this length. Otherwise, the
segment is accepted as too long. If the segment is truncated, the
position of the new stop is added as a potential start to the segment
list. Further, all segment information is updated starting from the
grouping operation to incorporate the new start.

3. EVALUATION

As already mentioned in Section 1, the musical form of a song is
rarely unambiguous and basically only the composers could ulti-
mately define the true musical form of their compositions. Still,
every evaluation of musical structure has to be based on a pre-
defined ground truth.

To evaluate our system, we use a body labeled by either pro-
fessional musicians and/or musicologists for the MPEG-7 working
group. The testing corpus, similar to the one used in [1], consists
of 32 songs and includes the full Beatles album "With the Beatles"
as well as a list of more recent pop songs by artists like Alanis
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Morisette, Björk, Madonna or The Spice Girls. Since the label-
ing is done in seconds, all segment borders have to be quantized
to beat-level, granting a common time base for the automatically
detected segmentation and the annotated ground truth.

3.1. Evaluation metrics

We use two different evaluation metrics which have widely been
used in musical structure detection before [22]: the pairwise F-
measure and the directional Hamming distance.

The pairwise F-measure F is a standard evaluation metric for
clustering algorithms and represents the harmonic mean of the
pairwise precision Pr and recall rate Rr . Let Γr be a set of iden-
tically labeled pairs of beats in the reference segmentation and Γd
in the automatically detected segmentation. With |· | denoting the
cardinality of the respective set, the measures are defined as:

Pr =
|Γd ∩ Γr|
|Γd|

(3)

Rr =
|Γd ∩ Γr|
|Γr|

(4)

F =
2 · Pr ·Rr
Pr +Rr

(5)

A low pairwise precision rate is an indicator for under segmen-
tation, while a low pairwise recall rate indicates over segmentation.
The pairwise F-measure therefore describes an overall quality of
the found segmentation.

The second metric is the directional Hamming distance [14].
Given the reference segmentation as a sequence of n segments
R = {S1

R, S
2
R, . . . , S

n
R} and the automatically detected segmen-

tation as a sequence of m segments D = {S1
D, S

2
D, . . . , S

m
D }, the

directional Hamming distance is denoted by DH(R ⇒ D). For
each segment SiD from the detected segmentation a segment SjR
from the reference segmentation is associated so that the overlap
of the segments SiD ∩ SjR is maximal. The directional Hamming
distance is then defined as:

DH(R⇒ D) =
∑
Si

D

∑
Sk

R
6=Sj

R

|SiD ∩ SkR| (6)

Similarly, the inverse directional Hamming distance can be
symmetrically computed for DH(D ⇒ R). Normalizing the re-
sulting distances by the number of beatsN of the underlying track
allows us to derive two error rates: the missed boundaries (or miss
rate) m = DH(R ⇒ D)/N and the segment fragmentation (or
false alarm rate) f = DH(D ⇒ R)/N . Low values of m indi-
cate under segmentation, while low values of f indicate an over
segmentation.

3.2. Results

Table 1 shows the overall performance of the system based on
the pairwise F-measure while Figure 5 shows a scatter plot of the
missed boundaries and the segment fragmentation for all analyzed
songs. Even if the overall evaluation results for both metrics may
not be fully comparable to other methods due to our relatively
small testing corpus, they indicate that segment detection based
on NCC could be a promising new approach in the field.

The overall performance of the algorithm on the Beatles cor-
pus is slightly better than on the selection of modern songs, as most

of the Beatles songs have a quite simple structure and long repet-
itive sequences. Since our algorithm is based on chroma vectors
and MFCCs, strong timbral variations in segments of the same for-
mal part (e.g. changes in the overall instrumentation) sometimes
lead to over-segmentation. Although such songs may exhibit poor
evaluation results compared to a reference segmentation, the over-
segmentation is mainly caused by the used features and not the
template matching algorithm itself.

A real problem for the template matching algorithm are songs
with a lot of very short repeated areas (e.g. REM-Drive), as too
many repetitions are found to be "valid". This problem could either
be solved by a more sophisticated post-processing step or a multi-
scale approach as proposed in Section 4.

Two typical segmentations detected by our algorithm are il-
lustrated in Figure 6. Although both segmentations show slight
temporal shifts of the detected segments (D) compared to the un-
derlying reference segmentation (R) (sometimes the transition be-
tween two adjacent segments is assigned to the wrong segment),
they still offer a good representation of the song structure.

Figure 5: Scatterplot of "segment fragmentation" against "missed
boundaries" for all songs in the testing corpus.

Corpus Rr Pr F
Beatles 70 78 72
Recent 64 71 66
Overall 67 74 69

Table 1: Pairwise F-measure (%)

4. CONCLUSION AND FUTURE WORK

A system for automatic music structure analysis based on NCC
and measure-level SDMs has been presented. We introduced the
embedding dimension known from RP analysis as a tunable pa-
rameter to enhance the clarity of certain temporal dependencies
inside SDMs on different time scales (in our case measures). Be-
sides, we developed a mapping operation based on Otsu’s method
as a pre-processing step for the template matching.

The thresholding method for detections found by NCC is the
most critical part for the whole system, as it can lead to wrong
segmentations despite clear results after the template matching.
Sometimes, small changes in the investigated SDM can have a
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(a) Madonna - Like a Virgin

(b) The Beatles - It Won’t Be Long

Figure 6: Comparison of automatically detected segmentations
(D) and their corresponding reference segmentations (R)

strong influence on the threshold and the resulting detection. Al-
though the proposed thresholding vector ~t(j) performs satisfacto-
rily for our data set, methods incorporating other system param-
eters (e.g. embedding dimension, template width) could help to
improve the overall stability of the system.

Future work could also be focused on a multi scale approach
of the presented algorithm, allowing segmentations on different
time scales. Namely, the combination of different embedding di-
mensions as well as different template widths could help to avoid
typical cases of over-segmentation as mentioned in 3.2.
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